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Abstract

We develop a methodology to perform finite fault source inversions from strong motion data
using Green’s functions (GFs) calculated for a three-dimensional (3-D) velocity structure. The
3-D GFs are calculated numerically by inserting body forces at each of the strong motion sites
and then recording the resulting strains along the target fault surface. Using reciprocity, these
GFs can be recombined to represent the ground motion at each site for any (heterogeneous) slip
distribution on the fault. The reciprocal formulation significantly reduces the required number of
3-D finite difference computations to at most 3NS, where NS is the number of strong motion
sites used in the inversion. Using controlled numerical resolution tests, we have examined the
relative importance of accurate GFs for finite fault source inversions which rely on near-source
ground motions. These experiments use both 1-D and 3-D GFs in inversions for hypothetical
rupture models in order (1) to analyze the ability of the 3-D methodology to resolve trade-offs
between complex source phenomena and 3-D path effects, (2) to address the sensitivity of the
inversion results to uncertainties in the 3-D velocity structure, and (3) to test the adequacy of
the 1-D GF method when propagation effects are known to be three-dimensional. We find that
given “data” from a prescribed 3-D Earth structure, the use of well-calibrated 3-D GFs in the
inversion provides very good resolution of the assumed slip distribution, thus adequately
separating source and 3-D propagation effects. In contrast, using a set of inexact 3-D GFs or a
set of hybrid 1-D GFs allows only partial recovery of the slip distribution. These findings suggest
that in regions of complex geology the use of well-calibrated 3-D GFs has the potential for
increased resolution of the rupture process relative to 1-D GFs. However, realizing this full
potential requires that the 3-D velocity model and associated GFs should be carefully validated
against the true 3-D Earth structure before performing the inverse problem with actual data.
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1. Introduction

Over the last several years the dramatic improve-
ment in computational resources, along with the con-
tinued development of efficient numerical algorithms,
has allowed elastic wave field simulation techniques
to be applied to large-scale three-dimensional (3-D)
problems. Some recent studies using 3-D calculations
to simulate strong ground motions from earthquakes
include the work of Frankel and Vidale [1992], Frankel
[1993], Olsen and Archuleta [1996], Wald and Graves
[1998], Pitarka et al. [1998], and Graves [1998]. The
results of these and other studies demonstrate the im-
portance that variable 3-D subsurface structure can
have on the propagation and amplification of seismic
waves, particularly in regions containing deep sedi-
mentary basins. These propagation effects include
the generation of surface waves at basin margins [e.g.,
Frankel and Vidale, 1992], basin edge amplification
[e.g., Pitarka et al., 1998], and focusing type amplifi-
cation [e.g., Gao et al., 1996; Hartzell et al., 1997].

Along with an increased understanding of 3-D
propagation effects, these studies also point out the
need for accurate models of the earthquake source and
rupture process in order to reliably simulate strong
ground motions [e.g., Graves, 1998]. Recent, well-
recorded earthquakes such as Loma Prieta, Landers,
Northridge, and Kobe have provided a wealth of infor-
mation regarding the spatial and temporal complex-
ity of fault rupture. Typically, source rupture models
are derived for these and other earthquakes by di-
rect inversion of strong ground motion records alone
[e.g., Beroza, 1991; Cohee and Beroza, 1994; Zeng and
Anderson, 1996; Hartzell et al., 1996; Sekiguchi et al.,
1996] or by using a combined inversion of strong mo-
tion, teleseismic, and geodetic data [e.g.,Hartzell and
Heaton, 1983; Wald et al., 1991; Wald and Heaton,
1994;Wald et al., 1996; Yoshida et al., 1996]. The in-
versions used in these studies all act to minimize the
misfit between a set of model predictions and a set of
observed responses. To help assess the adequacy of
source inversion methods, several recent studies have
also examined the trade-offs between model parame-
terization and the resolvability of various aspects of
the source rupture process. These include analyses of
the effects of station coverage [e.g., Iida, 1993; Sarao
et al., 1998], Green’s function accuracy [e.g., Cohee
and Beroza, 1994], and dynamic rupture properties
[e.g., Guatteri and Spudich., 2000].

Primarily because of computational limitations,
the Green’s functions used in all of the aforemen-

tioned inversion analyses have been limited to 1-D
(plane-layered) structures. For situations such as the
Northridge and Kobe earthquakes where strong lat-
eral velocity variations are known to exist, Wald et
al. [1996], Zeng and Anderson [1996], Wald [1996],
Sekiguchi et al. [1996], and Hartzell et al. [1999]
used a hybrid set of 1-D rock and 1-D soil Green’s
functions in their inversion procedures. To first or-
der, this hybrid set of 1-D Green’s functions accounts
for the gross impedance amplification effects between
different site types; however, it cannot account for 3-
D propagation effects that can also significantly affect
the waveforms and amplitudes of the ground motions.

As more detailed 3-D models of crustal structure
are developed [e.g., Magistrale et al., 1998; Brocher
et al., 1997] and the use of 3-D elastic wave field sim-
ulations becomes more routine, it is natural to con-
sider using 3-D Green’s functions in the source inver-
sion procedure [e.g., Liu and Archuleta, 1999]. How-
ever, before doing this in a routine fashion, several
important issues need to be examined. These include
assessment of (1) the ability of the 3-D methodol-
ogy to resolve trade-offs between complex source phe-
nomena and complex 3-D path effects, (2) the reso-
lution potential of the hybrid 1-D Green’s function
method when propagation effects are known to be
three-dimensional, and (3) the sensitivity and accu-
racy of the inversion results to expected uncertainties
in the 3-D velocity structure (e.g., the use of inexact
or inadequate 3-D Green’s functions).

For example, in the Los Angeles region, even with
our current state of knowledge of the 3-D subsurface
structure, there are still areas where the structure is
not well resolved. This can lead to significant uncer-
tainty in the ground motion response, even for rel-
atively long period (5-10 s) energy [e.g., Wald and
Graves, 1998]. In a situation such as this, we need
to determine if a set of inexact 3-D Green’s functions
is better or worse than a set of hybrid 1-D Green’s
functions for recovering the source complexity.

In the sections that follow, we first discuss the cal-
culation of 3-D Green’s functions using the principal
of reciprocity and present some examples demonstrat-
ing the effectiveness of this approach. Next, we step
through a series of well-controlled source inversion ex-
ercises which are designed to test the sensitivity of the
inversion procedure to the trade-offs between the 1-D
and 3-D Green’s functions. To remove all uncertain-
ties other than the effects of wave propagation in this
analysis, we perform the inversions using a set of syn-
thetic data in which all of the rupture parameters are
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known. Finally, we discuss the results of the various
inversion analyses and the implications that these re-
sults have for applying the 3-D inversion methodology
to actual ground motion data.

2. Three-Dimensional Reciprocal
Green’s Functions

A theoretical statement of source-receiver reci-
procity for seismic wave fields is given by Betti’s rela-
tion [e.g., Aki and Richards, 1980; Dahlen and Tromp,
1998]. This relation states that the locations and
orientations of source and observation points can be
switched and the exact same elastic response will be
observed.

For a double-couple source in elastic media, obser-
vations on three orthogonal components are needed to
fully describe the motion at an observation point. Re-
constructing this response using reciprocity requires
three separate computations, each one initiated with
a single force located at the desired observation point.
The response for the double couple source is then ob-
tained by recording the moment tensor contributions
at the desired source location for each of the recipro-
cal force calculations. For a body force oriented along
the xi component, the moment tensor contributions
to this component of displacement are

mxxi =
∂ux

∂x
, (1a)

myyi =
∂uy

∂y
, (1b)

mzzi =
∂uz

∂z
, (1c)

mxyi =

(
∂uy

∂x
+
∂ux

∂y

)
, (1d)

mxzi =

(
∂uz

∂x
+
∂ux

∂z

)
, (1e)

myzi =

(
∂uz

∂y
+
∂uy

∂z

)
, (1f)

where ux, uy, and uz are the computed displace-
ments per unit force in the x, y, and z directions,
recorded at the desired source location. These re-
sponses are appropriately called reciprocal Green’s
functions (RGFs) because they represent the propa-
gation effects between two locations for a single force
component.

The final displacement response (ui) is then ob-
tained using a weighted sum of the RGFs for each

component:

ui = a1 mxxi + a2 myyi + a3 mzzi

+ a4 mxyi + a5 mxzi + a6 myzi . (2)

The coefficients a1, ..., a6 are computed given the
strike, dip, rake, and moment of the desired source
orientation [e.g., Aki and Richards, 1980]. The ad-
vantage of this approach using grid-based techniques
such as the finite difference (FD) method is that a
large number of potential source locations can be im-
aged using just a few calculations [e.g., Graves and
Clayton, 1992].

The numerical implementation of the RGF tech-
nique using the 3-D staggered grid finite difference
method [e.g., Graves, 1996b] is straightforward. How-
ever, for observation points located on the surface,
care must be taken to ensure that the forces in-
serted at the free surface in the reciprocal calcula-
tions obey the appropriate boundary conditions. We
have tested the numerical RGF procedure for a vari-
ety of source mechanisms and velocity structures by
comparing against results calculated for the forward
problem using analytic, frequency wave number [e.g.,
Saikia, 1994], and finite difference methods. In all
cases, the RGF procedure produces excellent results.

To demonstrate the applicability of the RGF tech-
nique within strongly heterogeneous media, we per-
form simulations of hypothetical events occurring in
the San Fernando basin region of southern California
using a single observation point located on the sur-
face near the center of the basin (Figure 1). For these Figure 1
tests, the 3-D velocity structure is taken from Graves
[1996a]. Cross sections through this model are also
shown in Figure 1.

Three point sources are used for the comparison,
denoted by e01, e02, and e03 in Figure 1. Table 1 Table 1
gives the mechanism and depth for each source. Two
sets of calculations are performed in this test. The
first is a direct forward simulation for each source
using the source parameters listed in Table 1. The
second set is a reciprocal simulation where body forces
are inserted at site s01 and RGFs are determined for
the travel path to each source location. The desired
response is then obtained by weighting and summing
the RGFs. For each source the reciprocal simulation
should produce the same waveforms as that obtained
with the direct solution.

Both sets of simulations are computed using the
staggered grid FD method. The grid spacing is 0.1



4

km, and the minimum shear velocity is 0.5 km/s. The
source time function is a 0.5 s cosine bell and the
results are low-pass filtered at 1 Hz.

Figure 2 compares the three-component velocity2
time histories obtained for each of the sources using
the RGF and direct solution techniques. For each
source mechanism there is excellent agreement be-
tween the two solution methods for the entire dura-
tion of the waveforms. This comparison demonstrates
the accuracy and utility of the RGF approach for com-
plex 3-D velocity models.

The reciprocal simulation consists of only three cal-
culations (one for each body force component) per
station, regardless of the number of potential source
locations. In this test we retain the RGFs only for
three source locations; however, the reciprocal simu-
lation images every grid point in the FD model, en-
abling a great many RGFs to be calculated with just
one simulation.

3. Source Inversion Parameterization

Our primary goal is to investigate the sensitivity
of the finite fault inversion procedure to propagation
differences between 1-D and 3-D velocity models. In
order to remove as much uncertainty from this pro-
cedure as possible, we have designed a set of well-
controlled numerical inversion experiments in which
all of the model parameters are known. Recently,
Guatteri and Spudich [2000] used a similar system-
atic approach to investigate the resolution of various
dynamic rupture parameters through the inversion of
strong motion observations.

The basic procedure we use is (1) to generate a set
of synthetic ground motion observations using a for-
ward simulation with a prescribed rupture model, 3-D
velocity structure, and distribution of stations, (2) to
compute RGFs at each station for a target fault plane
using both 1-D and 3-D velocity structures, and (3)
to perform least squares inversions of the 3-D syn-
thetic ground motion observations using both the hy-
brid 1-D and 3-D RGFs and compare the resulting
slip distributions with the known starting model.

For the inversion procedure the rupture velocity,
risetime, fault location and geometry, and slip direc-
tion (rake) are held fixed to the known values. The
inversion procedure will solve for the only remain-
ing unknown parameter, which is the slip distribution
across the fault plane.

In order to place our analysis in a realistic con-
text, we design our numerical experiments following

the source inversion analysis that was performed on
the Northridge earthquake byWald et al. [1996]. We
use the same fault geometry and distribution of strong
motion stations used in the previous analysis (Figure
3), along with existing 3-D velocity models of the San Figure 3
Fernando basin region.

3.1. Source Model

The assumed fault plane is 18 km along strike by
24 km downdip, with a strike of 122◦, a dip of 40◦,
and a depth to the top edge of 5 km. The hypocenter
is located 5 km along strike and 20 km downdip from
the top center location. Table 2 summarizes the fault Table 2
plane parameters. For the inversion procedure we use
a constant rake of 105◦, a constant rupture velocity
of 3 km/s, and a uniform slip velocity function given
by an isosceles triangle with a 0.6 s duration.

The fault plane is divided into 196 subfaults (14
along strike by 14 downdip) with different weights
assigned to each subfault to represent the desired
heterogeneous slip distribution. For the prescribed
rupture model, we assume a simple slip distribution
given by two rectangular slip patches (asperities) as
shown in Plate 1. The slip on the shallow asperity Plate 1
is a constant 2 m and the slip on the deep asper-
ity is a constant 1 m, to some degree mimicking the
slip recovered for Northridge earthquake [e.g., Wald
et al., 1996; Zeng and Anderson, 1996]. The region
surrounding the asperities has zero slip. The use of a
simple block-like pattern of slip to generate the syn-
thetic ground motion observations is useful since it
allows us to easily identify the resolution capabilities
of the various inversion experiments. With this fault
geometry and slip distribution, the simulated event
has a moment of about 5.3× 1018 Nm (Mw 6.45).

3.2. Velocity Models

We use two different 3-D velocity models of the
San Fernando basin region in our inversion analysis.
The first is from Graves [1996a] and the second is the
version 1 3-D seismic velocity model from the South-
ern California Earthquake Center [Magistrale et al.,
1998]. Hereinafter we refer to these models as Graves
and SCEC V1, respectively.

Both of these models are similar in that they
use geologic constraints to model subsurface horizons
(e.g., depth to basement). The structural makeup of
the models tends to differ where these data are sparse,
such as in the San Fernando basin region. To rep-
resent the velocity structure of the basin sediments,



5

the Graves model uses discrete, homogeneous layer-
ing which is based on the modeling of ground mo-
tion waveforms. The velocity structure of the SCEC
V1 model is based on empirical relations that have
been calibrated with borehole P wave velocity mea-
surements. This results in a smoother vertical dis-
tribution of velocity, generally increasing with depth
in the basin. In each model the 3-D basin struc-
tures are set into a laterally homogeneous background
model. Wald and Graves [1998] and Magistrale et al.
[1998] give more detailed discussions of the various
attributes of these two models.

Plate 2 compares shear wave velocity cross sec-
tions taken from these models along the three pro-
files shown in Figure 3. These cross sections indi-
cate that the models are similar in their gross struc-
tural composition, but substantial differences exist.
In general, the Graves model has a smoother basin
geometry, with the structures defined by rather long
wavelength features (albeit with sharp boundaries).
The SCEC V1 model has much more complexity, both
within the basins and along the basin boundaries, and
this model exhibits rapid lateral variations in velocity
over rather short length scales. The structural dif-
ferences in the models directly reflect the differences
in the geologic surfaces used in defining the models.
The Graves model uses only a few surfaces, which are
smoothly sampled to represent the basin structures.
The SCEC V1 model has undergone significant refine-
ment and evolution from its original form, and thus
includes many more surfaces with a higher sampling
resolution than those in the Graves model.

On a broad scale these two models provide the
most reliable and comprehensive information that is
currently available regarding the 3-D velocity struc-
ture in the San Fernando basin region. More impor-
tantly, the difference between the two models provides
a measure of the uncertainty that currently exists in
our knowledge of the actual 3-D velocity structure.
Differences in the velocity models lead directly to dif-
ferences in wave propagation effects, which can ulti-
mately result in significant differences in the pattern
of predicted ground motion observed during an earth-
quake [Wald and Graves, 1998]. Using these two mod-
els in our numerical experiments provides a measure
of the sensitivity in the inversion procedure related
to the uncertainty in our knowledge of the actual 3-D
Earth structure.

As part of the inversion analysis, we also use two
1-D velocity models, one designed for rock sites and
the other for basin sites. These 1-D models were de-

rived by first grouping the strong motion stations into
rock sites and basin sites based on near-surface geol-
ogy, and then generating a generic “rock” model and
a generic “basin” model for each group. Plate 3 com- Plate 3
pares the generic rock and basin 1-D shear velocity
models against the 1-D vertical profiles taken from
the Graves and SCEC V1 3-D models at each of the
strong motion sites. Although the 1-D profiles taken
from the 3-D models exhibit noticeable variability, the
generic 1-D models provide a good representation of
the average structure for the two site classes.

3.3. Synthetic Ground Motion Observations

Table 3 lists the 18 strong ground motion sites Table 3
that are used in the inversion experiments (see also,
Figure 3). In general, this station distribution pro-
vides very good coverage of the near-source region,
especially compared to that available in many other
source inversion studies. Using the prescribed rup-
ture model, we generate synthetic ground motions at
these 18 sites using a forward simulation procedure
for each of the two 3-D velocity models, as well as the
site-specific (rock or basin) 1-D velocity models. The
ground motions are simulated with the staggered grid
FD method using the modeling parameters listed in
Table 4. Table 4
Figure 4 compares the horizontal ground velocity Figure 4

waveforms simulated using the prescribed slip model
(Plate 1) at each of the strong motion sites for the
3-D and 1-D velocity models. These time histories
have been low-pass filtered with a corner at 0.667 Hz.

For many of the stations, the synthetics generated
with the different velocity models are quite similar,
both in amplitude and waveform. This is particu-
larly true for the first arrivals, which are composed
of primarily direct arrivals from the source. At later
times, both of the 3-D models predict basin-generated
arrivals which are not seen in the 1-D simulations.

Some sites (e.g., jens, nwhp, and rrs) have simi-
lar waveforms, but show a timing difference between
the different velocity models, and a few sites (e.g.,
ecc, newh, pacd, pard, and sylm) have noticeable dif-
ferences in amplitude and/or waveform for at least
one horizontal component. In general, the motions
at stations to the south and east tend to have more
similarity for the different velocity models, whereas
the motions at stations to the north and west tend
to have less similarity. Since the source and rupture
process are identical for all of these simulations, the
differences seen in the waveforms of Figure 4 directly
reflect the different propagational characteristics of
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the velocity models. As will be shown later, the slip
model inversion procedure can be quite sensitive to
these different wave propagation effects.

3.4. Reciprocal Green’s Functions

Using the reciprocal simulation method described
earlier, RGFs are calculated at each strong motion
station for a number of point source locations cov-
ering the target fault plane. To minimize sources of
uncertainty in the inversion, the target fault plane is
defined to be the same 18 km × 24 km fault plane
used in the forward simulations (Table 3). This lux-
ury is not available with real earthquakes where the
extent of the fault plane must be inferred from after-
shock locations or geodetic constraints, thus poten-
tially adding significant uncertainty to the problem.
For each reciprocal simulation the RGFs are saved at
a total of 4900 point source locations for each hori-
zontal component. We do not calculate RGFs for the
vertical component of motion, as this component is
typically down weighted (or not used) in source in-
version studies, and hence, does not warrant the ad-
ditional set of calculations. The exact location of the
point sources is fixed by the FD grid, and the aver-
age distance between adjacent point source locations
is about 300 m.

The RGFs are calculated at the 18 stations for the
3-D SCEC V1, the 3-D Graves, and the 1-D rock and
basin velocity models. For the 1-D calculations the
rock model is used for six stations (ecc, encr, kagc,
pacd, ssus, and svsc), and the basin model is used for
the remaining 12 stations (cnpk, jens, newh, nwhp,
pard, rrs, rse, sati, shrm, spva, sylm, and vnuy). Over
2.6× 105 multicomponent point source RGFs are cal-
culated in total. Obviously, computing this number
of 3-D Green’s functions would be impractical using
direct forward (i.e., nonreciprocal) calculations.

The target fault plane is divided into 196 subfaults,
each with dimensions of 1.29 km × 1.71 km. The mo-
tion for each subfault is obtained by summing the
responses of all the point source RGFs which are lo-
cated within that subfault and then normalizing the
response to unit slip. In the summation process, each
point source is lagged appropriately in time to ac-
count for the propagation of the rupture front across
the subfault. Thus all subfaults separately include the
effects of rupture propagation and directivity. A de-
tailed description of this modeling procedure is given
by Hartzell and Heaton [1983].

3.5. Inversion Method

A constrained linear least squares inversion proce-
dure is used to obtain the subfault dislocation weights
that give the best fit to the observed velocity wave-
forms. The inversion is constrained by requiring that
the slip is positive everywhere, and smoothing can
be applied by minimizing the difference in disloca-
tion values between adjacent subfaults. These con-
straints have been previously discussed by Hartzell
and Heaton [1983]. Solving for the amplitude of slip
on each subfault, given the strong motion observa-
tions and subfault synthetic seismograms, is posed as
an overdetermined system of linear equations:

Ax ∼= b , (3)

where A is the matrix of subfault synthetics, x is the
solution vector consisting of subfault slip weights, and
b is the data vector containing the observed ground
motions. Normalization and damping are included by
appending a number of rows to the equations:

(
C−1d A
λ S

)
x ∼=

(
C−1d b
0

)
. (4)

Here C−1d is an a priori data covariance matrix
which normalizes and weights the data, and S is a ma-
trix of smoothing constraints which minimize the slip
difference between adjacent subfaults (xi−xi+1 = 0),
both along strike and downdip. The linear weight
λ controls the trade-off between satisfying these con-
straints and fitting the data; in the discussion below
we simply refer to λ as the smoothing. For the inver-
sion of the seismic data, each component of motion
at individual stations is normalized to the maximum
value so that larger-amplitude stations do not domi-
nate the solution.

We use the different sets of hybrid 1-D and 3-D
subfault Green’s functions to invert the synthetic data
shown in Figure 4 to determine the slip distribution
on the fault. To concentrate on the source arrivals,
we restrict the inversions to include only the first 15 s
of the ground motion records. Both the observations
and subfault GFs are low-pass filtered with a corner
at 0.667 Hz and use a time step of 0.1 s.

We use several goodness of fit measures to facili-
tate comparisons of the results for the various inver-
sion tests. For the time histories we calculate zero-lag
cross correlations for each set of observed and pre-
dicted waveforms at each station. These are averaged
over all stations and components to obtain a single
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correlation coefficient (WXC) for each inversion test.
Amplitude variability is measured by calculating the
standard error of the misfit in peak velocity between
the observed and predicted time histories. The misfit
is defined as the ratio of the observed (Oi) and pre-
dicted (Si) peak velocity values for each component
at each station, and the standard error is expressed
in the natural logarithm domain:

ln(σPv) =

{
1

(N − 1)

N∑
i=1

[
ln

(
Oi

Si

)
−B

]2} 1
2

, (5)

where B is the model bias given by

B =
1

N

N∑
i=1

ln

(
Oi

Si

)
, (6)

and N is the total number of stations and compo-
nents.

Finally, the resolution of the inverted slip model
is measured by calculating the zero-lag, spatial cross
correlation between the prescribed slip distribution
and the inverted slip distribution:

SXC =

M∑
j=1

PjIj

[
M∑
j=1

Pj
2
M∑
j=1

Ij
2

] 1
2

. (7)

Here,M is the number of subfaults and Pj and Ij are,
respectively, the prescribed and inverted slip amounts
on subfault j. Since the slip amounts are always posi-
tive, the value of SXC can range from 0 at the poorest
correlation to 1 at the best. Obviously, this measure is
not available in the case of a real earthquake where the
exact slip distribution is unknown. However, for our
synthetic examples, this measure allows us to quanti-
tatively assess and compare the resolution of the slip
distributions obtained in the various tests.

4. Inversion Results

4.1. Three-Dimensional Data and
Well-Calibrated 3-D Green’s Functions

The first inversion experiment that we consider
uses synthetic observations and RGFs, both calcu-
lated from the SCEC V1 3-D velocity model. Since
the wave propagation aspects of the observations (b
vector) are matched exactly by the RGFs (A matrix),

we expect the least squares inversion to fully recover
the prescribed slip distribution. Nonetheless, this ex-
periment is useful in order to (1) test the resolution
and accuracy of the discrete RGFs in representing
rupture across a finite fault and (2) investigate the
sensitivity of smoothing values on both the inverted
slip model and the predicted ground motions.

Plate 4 shows inversion results for smoothing val- Plate 4
ues of 0.0 (no smoothing), 0.005, and 0.01. With no
smoothing (Plate 4b), the prescribed slip distribution
is exactly recovered, thus validating the RGF inver-
sion methodology for finite fault ruptures.

In general, when the GFs are less than exact,
smoothing must be applied in the inversion to main-
tain stability. Obviously, the use of smoothing will
blur the sharp edges of the slip distribution, as
demonstrated by the inversion results shown in Plates
4c and 4d. Since the RGFs used in this experi-
ment are a perfect match for the observations, the
results shown in Plate 4 represent the degree that
each smoothing value degrades the slip resolution.

The values of smoothing used here are typical of
those used in previous inversion analyses. The ex-
act value to use is subjective; however, the amount
of smoothing should not be so great that it signif-
icantly degrades the fit between the predicted and
observed ground motions in the bandwidth of inter-
est. Sekiguchi et al. [2000] provide a detailed discus-
sion regarding the optimal choice of smoothing value.
Figure 5 compares the observed ground motions with Figure 5
those predicted from the inverted slip model obtained
with a smoothing value of 0.01. The match between
the observed and predicted waveforms is excellent.
The waveform correlation coefficient is 0.99, and the
standard error of peak amplitude misfit is 0.059. This
indicates that for periods of T > 1.5 s, the predicted
ground motions are relatively insensitive to smooth-
ing values of 0.01 or less.

4.2. Three-Dimensional Data and Inexact
3-D Green’s Functions

We next consider observed ground motions from
the SCEC V1 3-D model and subfault synthetics from
the Graves 3-D model. The objective here is to inves-
tigate the impact on the inversion results when an
inexact (or poorly calibrated) set of 3-D GFs are em-
ployed.

Plate 5 displays the slip distributions obtained for Plate 5
this experiment. We show results for two cases: The
first is obtained using the raw absolute timing of the
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GFs, and the second is obtained by applying station-
dependent timing shifts to the GFs. The timing shifts
account for first-order timing differences between the
GFs and observations. This approach has been used
in previous inversion analyses [e.g.,Wald et al., 1996],
and is particularly useful when the timing of the GFs
is poorly calibrated or when absolute timing is un-
available for the data. For both inversion cases, re-
sults with smoothing values of 0.0, 0.005, and 0.01 are
shown.

The timing corrections are estimated for each sta-
tion by comparing the observed ground motions with
the synthetics obtained from the original inversion
performed without timing shifts. Figure 6 displays6
observed and synthetic motions from inversions with
and without timing shifts at three stations where the
corrections are most significant (of the order of 1 s).
These sites are located along the northern margin of
the San Fernando basin where the SCEC V1 model
has a very deep wedge of low-velocity sediments that
results in a delay of the GF relative to the observa-
tions (see Plate 2). Applying the timing corrections
noticeably improves the waveform match to the ob-
servations.

Figure 7 compares the observed and synthetic mo-7
tions at all stations for the time-corrected inversion
using a smoothing value of 0.01. For most stations the
match between the observed and calculated motions
is fairly good. The waveform correlation coefficient
for this result is 0.78, with a peak amplitude error of
0.337. These measures indicate an improvement over
the values of 0.64 and 0.372, respectively, that are
obtained when timing corrections are not used.

The effect of applying timing corrections to the
GFs also improves the resolution of the slip distribu-
tion. We quantify the resolution of the slip distribu-
tion by calculating the spatial correlation coefficient
of the inverted slip distribution (Plate 5) with the
prescribed slip distribution (Plate 1). For a smooth-
ing value of 0.01, the inversion without timing correc-
tions has a slip correlation of 0.57, and the inversion
including timing corrections has a slip correlation of
0.79. The primary effect of using the timing correc-
tions is to reduce the spurious slip patches along the
outer margins of the fault plane, thus concentrating
the slip into more box-like asperities (Plate 5).

While the results for this case show differences
compared to the results obtained in the previous sec-
tion using the exact 3-D GFs, the overall pattern of
slip (i.e., two asperities) is essentially recovered. This
suggests that although the use of poorly calibrated

3-D GFs will degrade the resolution of the inversion
procedure, the main features of the slip distribution
can still be recovered as long as the gross propaga-
tional aspects of the ground motions are included in
the Green’s functions.

4.3. Three-Dimensional Data and Hybrid
1-D Green’s Functions

In this section we analyze results for a set of inver-
sions that use observations generated from the 3-D
velocity models with subfault synthetics derived from
the hybrid 1-D GFs. These experiments are designed
to give an indication of the sensitivity of the hybrid
1-D GFs to variability and uncertainty in the 3-D ve-
locity structure.

Plate 6 displays the inversion results obtained us- Plate 6
ing the hybrid 1-D GFs with the observed ground mo-
tions from the SCEC V1 3-D velocity model. We show
results for various smoothing values both with and
without timing corrections. Figure 8 compares the Figure 8
observed and synthetic ground motions for the time-
corrected inversion using a smoothing value of 0.01.
As in the previous example, the addition of timing
corrections to the GFs significantly improves the res-
olution of the slip distribution. Without timing cor-
rections the slip tends to be concentrated into small
patches at the shallow and deep edges of the fault. Us-
ing the timing corrections, the slip is more accurately
partitioned into two block-like asperities. Spatial slip
correlations for the inversions without and with tim-
ing corrections are 0.68 and 0.75, respectively.

The last case we consider uses the hybrid 1-D GFs
with observed ground motions calculated from the
Graves 3-D velocity model. Plate 7 displays the inver- Plate 7
sion results for this experiment using various smooth-
ing values. Again, we have performed the inversions
with and without timing corrections. As in both of
the previous examples, the addition of timing correc-
tions to the GFs significantly improves the resolution
of the slip distribution. This allows the inversion to
more accurately place a larger portion of slip on the
shallower asperity and reduce the spurious slip along
the fault edges (Plate 7). The spatial slip correla-
tion goes from 0.65 to 0.85 with the addition of the
timing corrections. Figure 9 compares the observed Figure 9
and synthetic ground motions for the time-corrected
inversion using a smoothing value of 0.01. The wave-
form correlation coefficient for this result is 0.72 and
the peak amplitude error is 0.253, which compare fa-
vorably to the values of 0.60 and 0.399, respectively,
that are obtained without timing corrections.
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Comparing the results from Plate 6 (SCEC V1 ob-
servations) and Plate 7 (Graves observations), we see
that although there are differences in the details of
the slip distributions, overall, the results are fairly
similar. This suggests that the hybrid set of 1-D GFs
are not overly sensitive to the uncertainty in the 3-D
model, as long as the classification of the stations into
basin or rock sites is appropriate.

5. Discussion and Conclusions

The inversion results exhibit varying degrees of
success depending on the complexity of the assumed
data model and the set of GFs that are used. Ta-
ble 5 summarizes the goodness of fit measures for the
various experiments. Obviously, given a set of ground
motion data from a 3-D environment, the best resolu-
tion will be obtained using a set of well-calibrated 3-D
GFs. Our first inversion exercise considers the end-
member case where the 3-D GFs are an exact match
to the observations.

The remaining inversion exercises all consider the
more typical case where the GFs (either hybrid 1-D
or 3-D) are inexact representations of the wave prop-
agation characteristics in the observations. In these
situations the introduction of smoothing in the in-
version process is necessary due to inaccuracy in the
GFs. The better the GFs, the less smoothing that
is required. Although we can always improve the fit
to the data by reducing the amount of smoothing, in
doing this, the slip maximum and slip heterogeneity
begin to increase in an unstable fashion. Allowing
more complexity in the source, for example by incor-
porating rake variability, would also greatly improve
the fit. However, this is simply mapping inadequacy
in the GFs back into the source. Since we never have
perfect GFs in the situation with real data, simply
using the fit to the observations to gauge the success
of the inversion can be problematic.

In the case where we use data from the SCEC V1
3-D model with GFs from the Graves 3-D model, the
inversion produces a reduction in the slip resolution
compared to the exact case. The decrease in resolu-
tion is directly related to the differences in 3-D wave
propagation characteristics of the two velocity struc-
tures. These two models tend to have their largest
differences in the region covered by our study area,
and, in a sense, they may represent the end-member
cases of relatively complex 3-D structural variability
(SCEC V1) versus relatively simple 3-D structural
variability (Graves), as evidenced in Plate 2. Thus the

results of our inversion exercise illustrate the degree
of resolution that can be obtained in the nonoptimal
situation of using a set of inexact 3-D GFs.

Our results also reaffirm that the resolution of the
3-D inversion can be increased by improving the ac-
curacy of the 3-D GFs through the refinement of the
3-D velocity structure. In contrast to 1-D and 2D
models which can be readily tuned to fit a source to
station profile, the refinement of existing 3-D mod-
els presents a formidable challenge due to the addi-
tional complexity in the parameterization of the 3-
D structure. This stresses the need for independent
validation of the 3-D structure using exercises such
as the modeling of ground motion data from after-
shocks [e.g., Haase et al., 1996; Pitarka and Irikura,
1996; Scrivner and Helmberger, 1999] or other small
earthquakes [e.g., Sato et al., 1999; L. Eisner and R.
W. Clayton, A reciprocity method for multiple source
simulations, submitted to Bulletin of the Seismologi-
cal Society of America, 2001].

For the inversion experiments which use the hybrid
set of 1-D GFs, the resolution of the slip distribution
is comparable to that obtained with the inexact 3-
D GFs (see Table 5). In some respects this result
should not be surprising because even though the hy-
brid set of basin and rock 1-D GFs have “simpler”
wave propagation characteristics compared to the 3-
D GFs, they still retain the first-order impedance ef-
fects of the site response. This is particularly true
in our experiments since we only use the first 15 s of
the waveforms in the inversions. Thus we are concen-
trating mainly on the direct up going waves from the
source, and omitting most of the secondary arrivals
that are generated in the 3-D structures (see Figure
4). Expanding the time window used in the inversion
potentially allows the use of information in these later
arrivals to help constrain the slip distribution with the
3-D GFs. However, this potential can only be realized
if the 3-D GFs are well calibrated. Using inexact 3-D
GFs with a longer time window can actually degrade
the resolution of the inversion quite rapidly since the
degree of misfit between GFs from different 3-D (or
1-D) velocity structures can increase significantly at
later times into the waveform [e.g., Sekiguchi et al.,
2000]. We confirmed this by performing an inversion
with the inexact 3-D GFs using a 25 s time window.
The results indicate a significant reduction both in
the resolution of slip and in the fit to the observed
waveforms compared to the results for the 15 s time
window.

The use of hybrid 1-D GFs has been previously
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shown to yield significantly better waveform fits than
the use of a single set of 1-D GFs which are common
to all stations [e.g., Wald and Heaton, 1994; Wald
et al., 1996]. However, even when using hybrid 1-D
models to represent a range of profiles, the resolution
potential of the inversion is still inherently limited
because the hybrid 1-D GFs can never fully represent
the actual 3-D response at a given station. This is
true even in the limit that a different 1-D model is
used for each site. Clearly, for regions like southern
California, the ability to use a set of well-calibrated
3-D GFs to model observed ground motion data is
desirable.

The results we present here must be considered
within their context. First, the rupture scenario that
we analyze in this study represents only a single possi-
ble example of faulting in a basin environment. Since
the fault plane is located deep beneath the San Fer-
nando basin, the first 10 to 15 s of energy arriving
at sites in the near-fault region are dominated by di-
rect up going waves from the source, and the wave
propagation effects due to 3-D structure (e.g., basin
edge effects, surface wave generation) tend to be min-
imized [e.g., Somerville et al., 1996; Hartzell et al.,
1999]. Other rupture scenarios, such as shallow fault-
ing which occurred in the 1971 San Fernando earth-
quake, or basin edge faulting which occurred in the
1995 Kobe earthquake have produced very strong 3-D
effects at sites in the near fault region. Furthermore,
the potential for interaction between source and 3-D
wave propagation effects will certainly be greater as
the size of the event and duration of rupture increase.
These cases need to be examined in greater detail in
order to more fully understand the potential benefits
and pitfalls of using 3-D GFs in the inversion proce-
dure.

Second, further work is required to consider a more
complex rupture process which also allows variability
in slip direction, risetime, and rupture velocity across
the fault. A number of source inversion studies have
demonstrated the importance of incorporating vari-
ability in these parameters in order to better resolve
the details of the source process [e.g., Hartzell and
Heaton, 1983; Cotton and Campillo, 1995; Sekiguchi
et al., 1996]. However, doing this increases the num-
ber of free parameters in the inversion procedure, and
the effect of this on the resolution potential of the 1-D
and 3-D GFs needs to be investigated.

Last, the strong motion waveforms typically used
in source inversion analyses sample only a limited
bandwidth of data, usually between 1 and 5 s pe-

riod for Mw 6 to 7 earthquakes. The combined use
of strong motion recordings with other data sets such
as teleseismic observations or geodetic measurements
can greatly increase the period band covered by the
inversion. This approach is particularly useful when
considering complex, multiparameter rupture mod-
els [e.g., Wald and Heaton, 1994; Wald et al., 1996;
Yoshida et al., 1996]. In many cases these different
data sets are complementary. For example, geode-
tic measurements can provide valuable constraints on
the final slip distribution, but are insensitive to the
time evolution of slip. On the other hand, strong mo-
tion waveforms can provide detailed information on
the temporal evolution of the rupture process, but
are not as sensitive to the final static deformation.
Combining these data sets in the inversion procedure
provides a greater degree of stability and results in
a more comprehensive and robust model of the rup-
ture process [e.g., Wald and Heaton, 1994; Wald and
Somerville, 1995;Wald and Graves, 1999]. A detailed
investigation of combined data set source inversions
using 1-D and 3-D GFs is presented as a companion
paper to this work [Wald and Graves, this issue].
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Figure 1. (left) Map view of the finite difference (FD) model used in the reciprocal Green’s function (RGF)
test calculations. The basis for this model is the San Fernando basin region of southern California. The three
hypothetical source locations (e01, e02, and e03) are denoted with stars and the observation site (s01) is shown
with a triangle. (right) Vertical cross sections showing shear wave velocity along profiles A-A’ and B-B’ through
the FD model. The velocity structure is from the model of Graves [1996a].

Figure 2. Comparison of velocity time histories computed with the staggered grid FD method using the RGF
approach (solid line) and direct solution (dashed line) for the three hypothetical point sources. The results are in
very good agreement with one another.

Figure 3. Map showing the San Fernando basin region used in the finite fault inversion experiments. The surface
projection of the assumed fault plane is shown by the dashed rectangle (heavy line along top edge). The locations
of the two slip blocks (hatched shading) and the epicenter (star) are also indicated. Locations of strong motion
stations are shown by triangles. The extent of the FD model grid is given by the large box, along with the locations
of cross sections A-A’, B-B’, and C-C’.

Figure 4a. Horizontal component ground velocity time histories simulated at each of the strong motion sites with
the prescribed rupture model using the two 3-D velocity structures as well as the site-specific 1-D (rock or basin)
velocity structure. For each station, two sets of three time histories are shown. The top set of seismograms are for
the north component and the bottom set are for the east component. Within each component set, the top trace is
from the Graves 3-D model, the middle trace is from the SCEC V1 3-D model, and the bottom trace is from the
1-D model. Rock sites are shown in Figure 4a, basin sites are shown in Figures 4b and 4c. A low-pass filter with a
corner at 0.667 Hz has been applied to these records. The peak velocity (cm/s) is shown to the right of each trace.

Figure 4b. Same as Figure 4a.

Figure 4c. Same as Figure 4a.

Figure 5. Comparison of observed (SCEC V1 3-D) and predicted ground motions (SCEC V1 3-D) from the
inversion using smoothing value of 0.01. Observations are solid lines, and synthetics are dashed lines. The waveform
correlation coefficient and peak amplitude misfit error are given in the top right of the figure.

Plate 1. Slip distribution used in the forward simulations. Slip amount is contoured in meters and the hypocenter
is indicated by the star. The shallow asperity has a constant 2 m of slip, and the deep asperity has a constant 1 m
of slip. All other regions of the fault have zero slip.

Plate 2. Vertical cross sections showing shear wave velocity along profiles A-A’, B-B’, and C-C’ for both the
Graves and Southern California Earthquake Center version 1 (SCEC V1) 3-D velocity models. The white line in
profiles A-A’ and B-B’ shows the intersection of the shallow asperity from the prescribed slip model with the cross
sections.

Plate 3. One-dimensional velocity models for (left) rock sites and (right) basin sites for (top) the SCEC V1 model
and (bottom) the Graves model. The heavy black line shows the generic 1-D model used for the inversion analysis.

Plate 4. Inversion results for SCEC V1 3-D observations and SCEC V1 3-D GFs. (a) The input slip model. (b)
Inversion results with no smoothing constraints. Since the RGFs are from the same 3-D velocity model that is used
to generate the observations, the inversion fully recovers the exact slip distribution. (c and d) Inversion results
with smoothing values of 0.005 and 0.01, respectively.
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Figure 6. Comparison of the effect of time shifting of the GFs prior to the inversion at stations jens, nwhp, and
pard. Results obtained (left) without time corrections and (right) with time corrections. Observations are solid
lines, and synthetics are dashed lines. All results are for a smoothing value of 0.01.

Figure 7. Comparison of observed (SCEC V1 3-D) and predicted ground motions (Graves 3-D) from the inversion
using smoothing value of 0.01. Observations are solid lines, and synthetics are dashed lines. The waveform
correlation coefficient and peak amplitude misfit error are given in the top right of the figure.

Figure 8. Comparison of observed (SCEC V1 3-D) and predicted ground motions (hybrid 1-D) from the inversion
using smoothing value of 0.01. Observations are solid lines, and synthetics are dashed lines. The waveform
correlation coefficient and peak amplitude misfit error are given in the top right of the figure.

Figure 9. Comparison of observed (Graves 3-D) and predicted ground motions (hybrid 1-D) from the inversion
using smoothing value of 0.01. Observations are solid lines, and synthetics are dashed lines. The waveform
correlation coefficient and peak amplitude misfit error are given in the top right of the figure.

Plate 5. Inversion results for smoothing of (top) 0.0, (middle) 0.005, and (bottom) 0.01 for SCEC V1 3-D
observations and Graves 3-D GFs for cases of (left) no time shifting of the GFs prior to the inversion, and (right)
time shifting to align first arrivals prior to the inversion.

Plate 6. Inversion results for smoothing of (top) 0.0, (middle) 0.005, and (bottom) 0.01 for SCEC V1 3-D
observations and hybrid 1-D GFs for cases of (left) no time shifting of the GFs prior to the inversion, and (right)
time shifting to align first arrivals prior to the inversion.

Plate 7. Inversion results for smoothing of (top) 0.0, (middle) 0.005, and (bottom) 0.01 for Graves 3-D observations
and rock/basin 1-D GFs for cases of (left) no time shifting of the GFs prior to the inversion, and (right) time shifting
to align first arrivals prior to the inversion.
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Table 1. Source Parameters for 3-D Reciprocal Green’s
Function Tests

Source Strike Dip Rake Depth, km Mo, N m

e01 47◦ 70◦ 20◦ 1.0 1× 1017

e02 126◦ 30◦ 105◦ 5.0 2× 1017

e03 267◦ 45◦ 60◦ 7.0 3× 1017
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Table 2. Fault Model Parameters

Parameter Value

Top center (TC) location 34.344◦ N, −118.515◦ E
Length 18 km
Width 24 km
Depth to top edge 5 km
Strike 122◦

Dip 40◦

Rake 105◦

Rupture velocity 3 km/s
Hypocenter (from TC)

Along strike 5 km
Downdip 20 km

Risetime 0.6 s
Mw 6.45
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Table 3. Strong Motion Stations

Station Name Latitude, ◦N Longitude, ◦E Site Type

Canoga Park cnpk 34.212 -118.601 basin
Energy Control Center ecc 34.259 -118.336 rock
Encino Reservoir encr 34.150 -118.510 rock
Jenson Filtration Plant jens 34.312 -118.496 basin
Kagel Canyon kagc 34.288 -118.375 rock
Newhall Fire Department newh 34.387 -118.530 basin
Newhall Pico Canyon nwhp 34.391 -118.622 basin
Pacoima Dam pacd 34.334 -118.396 rock
Pardee Substation pard 34.435 -118.582 basin
Rinaldi Receiving Station rrs 34.281 -118.479 basin
Receiving Station East rse 34.176 -118.360 basin
Canoga Park Saticoy sati 34.209 -118.517 basin
Sherman Oaks shrm 34.154 -118.465 basin
Sepulveda VA Hospital spva 34.249 -118.475 basin
Santa Susanna ssus 34.231 -118.713 rock
Santa Susanna Katherine svsc 34.264 -118.666 rock
Sylmar sylm 34.326 -118.444 basin
Van Nuys vnuy 34.221 -118.471 basin
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Table 4. Finite Difference Modeling Parameters

Parameter Value

Model grid dimensions 310× 250× 180
Total time steps 4000
Grid spacing, km 0.15
Time step, s 0.008
Minimum velocity, km/s 0.5
Maximum frequency limit, Hz 0.667
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Table 5. Goodness of Fit Measures (Smoothing = 0.01)

Data Model GF Model Timing Shift WXC
a ln(σPv)

b SXC
c

SCEC V1 3-D SCEC V1 3-D no 0.99 0.059 0.92
SCEC V1 3-D Graves 3-D yes 0.78 0.337 0.79
SCEC V1 3-D Graves 3-D no 0.64 0.372 0.57
SCEC V1 3-D Hybrid 1-D yes 0.76 0.314 0.75
SCEC V1 3-D Hybrid 1-D no 0.63 0.485 0.68
Graves 3-D Hybrid 1-D yes 0.72 0.253 0.85
Graves 3-D Hybrid 1-D no 0.60 0.399 0.65

aWXC denotes waveform cross-correlation coefficient.

bσPv denotes standard error in misfit to peak velocity.
cSXC denotes slip distribution correlation coefficient.
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Figure 2: SINGLE column width, BLACK AND WHITE.
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Figure 4a: DOUBLE column width, BLACK AND WHITE.
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Figure 4b: DOUBLE column width, BLACK AND WHITE.
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Figure 4c: DOUBLE column width, BLACK AND WHITE.
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Figure 5: DOUBLE column width, BLACK AND WHITE.
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Plate 5: SINGLE column width, COLOR.
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Figure 6: SINGLE column width, BLACK AND WHITE.
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Figure 7: DOUBLE column width, BLACK AND WHITE.



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Slip in Meters

No Timing Shift With Timing Shift

0

6

12

18

24

do
w

n 
di

p 
(k

m
)

0 6 12 18

 

SM=0.00 6.2 m

0

6

12

18

24

do
w

n 
di

p 
(k

m
)

0 6 12 18

 

SM=.005 3.9 m

0

6

12

18

24

do
w

n 
di

p 
(k

m
)

0 6 12 18

along strike (km)

SM=0.01 3.3 m

0

6

12

18

24

 

0 6 12 18

 

SM=0.00 5.7 m

0

6

12

18

24

 

0 6 12 18

 

SM=.005 3.2 m

0

6

12

18

24

 

0 6 12 18

along strike (km)

SM=0.01 2.5 m

Plate 6: SINGLE column width, COLOR.
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Figure 8: DOUBLE column width, BLACK AND WHITE.
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Plate 7: SINGLE column width, COLOR.
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Figure 9: DOUBLE column width, BLACK AND WHITE.


