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Non-technical Summary
January 1 — December 31, 2003

This cooperative agreement provides major support for urban and regiona seismic monitoring in the study
area. During 2003 we added ten new strong-motion stations to our real-time earthquake information system
in the Wasatch Front area as part of the Advanced National Seismic System (ANSS). At the end of 2003
our newly developed urban network included 75 ANSS-funded stations, and our regional/urban network
recorded data from a total of 202 stations. We located 1,084 earthquakes in our Utah study region during
2003; nineteen had a magnitude of 3.0 or larger, and thirteen were reported felt. The largest local
earthquakes, all in central Utah, were shocks of magnitude 4.3 on April 16 and atriplet of earthquakes with
magnitudes of 3.6, 3.6, and 3.7 on December 27. One important investigation completed during the report
period was a study of increased seismicity in Utah remotely triggered by the magnitude 7.9 Denali Fault,
Alaska, earthquake that occurred on November 3, 2002.
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Summary
January 1 — December 31, 2003

The cooperative agreement identified here, combined with funding from the State of Utah, provided major
support for the operation of (1) the University of Utah Seismograph Stations (UUSS) regional and urban
seismic network and (2) a regional earthquake-recording and information center on the University of Utah
campus in Salt Lake City.

At the end of December 2003, UUSS operated 161 stations and recorded 202 stations (~50% short-period,
~35% strong-motion, ~15% broadband, with some stations having multiple sensor types). USGS support is
focused on the seismically hazardous Wasatch Front urban corridor of north-central Utah, but also
encompasses neighboring areas of the Intermountain Seismic Belt. During the report period, project efforts
involved: (&) continued development of a real-time earthquake information system in the Wasatch Front area
as an element of an Advanced National Seismic System (ANSS); (b) timely study of new data acquired with
our modernized network—including studies of increased seismicity in Utah remotely triggered by the
November 3, 2002, Denali Fault, Alaska, earthquake; (c) ongoing network operations; and (d) miscellaneous
related activities.

Notable accomplishments during 2003 included: (1) improving the performance of our Earthworm system
for real-time earthquake monitoring and automated alerts; (2) using a ShakeMap scenario option to model
observed ground-shaking intensity from an M 5.2 earthquake in the Salt Lake Valley in 1962 and to explore
sensitivity to the choice of attenuation relation and uncertainty in site amplification; (3) adding ten new
stations to Utah’s real-time urban strong-motion network and integrating two more strong motion stations
operated by the USGS National Strong Motion Program into our real-time system; (4) completing a study of
triggered seismicity caused by the M,, 7.9 Denali Fault earthquake (manuscript submitted to the Bulletin of
the.Seismological Society of America); (5) improving methods for determining magnitudes of very small
earthquakes and optimizing record lengths for automatic determination of local magnitude (M,); (6)
providing technical assistance to other regional seismic networks in the ANSS Intermountain West Region;
(7) and participating in working groups to develop the next generation of ground-shaking hazard mapsin
Utah.

During the report period, we detected and analyzed approximately 5,100 seismic events, including loca
earthquakes, teleseismic and regional earthquakes, and blasts. A total of 2,314 earthquakes were located



within and near our regional seismic network—including 1,084 within the Utah region, of which 827 were
within the Wasatch Front area. Nineteen earthquakes of magnitude 3.0 and larger occurred in the Utah
region during the report period; thirteen were felt. The largest earthquakes were (1) a shock of magnitude
(M) 4.3 that occurred at 01:04 UTC on April 17, 2003, 6 km (4 mi) SSW of Levan in central Utah and (2)
atriplet of earthquakes of magnitude (M) 3.6, 3.6, and 3.7 that occurred respectively at 00:39, 00:40, and
00:43 UTC on December 27, 2003. The latter earthquakes also occurred in central Utah, 12 km (8 mi) SW
of Nephi and 16 km (10 mi) NNW of the April 17 earthquake.
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INTRODUCTION

This technical report summarizes results and accomplishments under this cooperative agreement during the
period January 1-December 31, 2003. During the report period, project efforts involved: (a) continued
development of a real-time earthquake information system in the Wasatch Front area as an element of an
Advanced National Seismic System (ANSS); (b) timely study of new data acquired with our modernized
network—including studies of increased seismicity in Utah remotely triggered by the November 3, 2002,
Dendi Fault, Alaska, earthquake; (c) ongoing network operations; and (d) miscellaneous related activities.

General Background

This cooperative agreement, combined with funding from the State of Utah, provided major support for the
operation of (1) the University of Utah Seismograph Stations (UUSS) regional and urban seismic network and
(2) aregional earthquake-recording and information center on the University of Utah campusin Salt Lake
City.

At the end of December 2003, UUSS operated 161 stations and recorded 202 stations (~50% short-period,
~35% strong-motion, ~15% broadband, with some stations having multiple sensor types). USGS support is
focused on the seismically hazardous Wasatch Front urban corridor of north-central Utah, but also
encompasses neighboring areas of the Intermountain Seismic Belt. State funds contribute significantly to
network-operation costs in the Wasatch Front area, and they support network operations in Utah outside this
area.

Information products and services produced under this cooperative agreement include rapid earthquake alert,
a Web site with near-real-time earthquake information, earthquake catalogs (issued on a quarterly basisin
preliminary form and periodicaly in finalized form), automated transfer of hypocentral, waveform, and
arrival-time data to other outlets prescribed by the USGS for broad access, and extensive expert assistance to
individuals and groups in earthquake education and awareness, public policymaking, planning and design, and
hazard and risk assessment.

Scientific objectives include the characterization of tectonic framework and earthquake potential, surveillance
of space-time seismicity and characteristics of small-to-moderate earthquakes (for understanding the
nucleation of large earthquakes in the region), improved ground-motion modeling for engineering applications,
and the documentation and evaluation of various earthquake-related parameters for accurate hazard and risk
analyses. Some scientific results are reported to the USGS under separate research awards.

Earthquake Hazards and Risk in the Study Region

Earthquakes pose the greatest natural threat for destruction of life and property in Utah. On a nationa level,
the relative hazard and risk of Utah's Wasatch Front area led the USGS to target it for an urban strong-motion
network of 500 instruments in its 1999 report to Congress for an Advanced National Seismic System (ANSS)
(USGS Circular 1188). The Federal Emergency Management Agency (FEMA) ranks Utah seventh in the
Nation in absolute risk and sixth in relative risk when one takes the average of the average annualized
earthquake loss to the replacement value of the building inventory (FEMA, 2000).



Tectonically, the Wasatch Front area occupies an active segment of the | SB—roughly centered on the 343-
km-long Wasatch fault zone. Diffuse shallow seismicity, Holocene normal faulting, and episodic surface-
faulting earthquakes of M6.5 to M7.5+ characterize the area. The Wasatch fault is notable as the longest
continuous, active normal fault in the United States (10 discrete segments)—with five central segments
between Brigham City and Nephi (just off the bottom of the map in Figure 2) having an average length of
about 50 km, Holocene dlip rates of 1-2 mm/yr, and average recurrence intervals ranging from about 1,300 to
2,800 years (Machette et al., 1991; McCalpin and Nishenko, 1996). One of the most active segmentsis the
Salt Lake City segment, which has produced large, M~7, surface-faulting earthquakes on the average of once
every 1,350+200 years during the past 6,000 years, with the last one occurring 1,230+60 years ago (Black et
al., 1995; McCalpin and Nishenko, 1996; McCalpin and Nelson, 2000).

The National Seismic Hazard Maps of Frankel et al., (1996, gridded data; 2003 gridded data were
inaccessible) indicate relatively high ground-shaking hazard for the Wasatch Front—reflected, for example, by
the following values of peak ground acceleration in the Salt Lake Valley for specified probabilities of
exceedance: 0.30 g (10% in 50 yr), 0.53 g (5% in 50 yr), 0.87 g (2% in 50 yr).

More than three-quarters of Utah's population and economy are concentrated in the Wasatch Front area,
literally astride the five most active segments of the Wasatch fault. Population in the Greater Wasatch Area,
most densely concentrated in the Ogden-Salt Lake City-Provo urban corridor, is growing rapidly from a 1995
base of 1.6 million and is projected to reach 2.3 million by 2010 and 3.1 million by 2030 (QGET Work Group,
2003). Based on data for 1997-2001, total new construction in the Greater Wasatch Area has averaged $3.3
billion per year (Isaacson, 2002). From 2000 to 2030, a billion dollars per year will be spent on new
infrastructure for transportation and water (QGET Work Group, 2003).

Estimated direct economic losses to buildings and lifelines for a magnitude 7.5 earthquake in Salt Lake County
are approximately $12 (+3) billion (in 1997 dollars) (Rojahn et a., 1997). If one adds indirect economic and
social losses (casualties, displaced households, and short-term shelter needs), total losses could be 20 percent
higher, putting the total in the range of $11 billion to $18 billion.

Contributions and Benefitsto NEHRP

Both NEHRP and the USGS benefit greatly from this project in the form of (1) significant (albeit not formal)
sharing of costs by the state of Utah under this state-federal partnership and (2) wide-ranging activities by the
University of Utah seismologists, which effectively relieve the USGS from having to meet the same first-order
needs in thisregion. (Unlike other NEHRP focus regions such as southern and northern California, the
Pacific Northwest, and New Madrid, there are no collocated USGS earthquake scientists here) Data and
information from our regional/urban network provide essential underpinnings for earthquake engineering,
emergency response, and science in our region.

The strength of the combined state-federal funding to our earthquake research group is that it has allowed us
to balance the practical necessities of a regional seismological approach along with careful attention to Utah's
urban corridor. Federal funding also gives us essential flexibility to study—and to respond to significant
earthquakes in—aother parts of the ISB outside of Utah, where our state funds can't appropriately be used.

In recent testimony to the U.S. House Committee on Science/Subcommittee on Research, as part of NEHRP
reauthorization hearings, Dr. L. D. Reaveley, a prominent structura engineer, described our new urban
monitoring as a NEHRP success story: "One of the reasons | call this a success story is because the new
urban network and real-time earthquake information system has galvanized interactions among earth



scientists, engineers, emergency managers, the Utah Seismic Safety Commission, and other stakeholders—all
concerned with practical steps towards improving earthquake safety in Utah" (Reaveley, 2003).

Two other practical examples, indicative of our success in achieving activism on behalf of earthquake hazard
mitigation in Utah, are the following. On May 28, 2003, the governor of Utah, Michael O. Leavitt, wrote the
following to all five members of Utah's Congressional delegation: "Continued operation and expansion of
[Utah's new real-time earthquake information system] is important for the safety of the public in Utah and for
producing data and information that will reduce earthquake losses in the long term. He asked each of them
"to consider it a Utah priority to find funding at a higher level [for ANSS]." On June 16, 2003, al three of
Utah's House Members signed on to a letter from Representatives Nick Smith and Zoe Lofgren to the House
Appropriations Subcommittee on Interior urging an increased funding level of at least $10 million for ANSS
for FY04.

Regional/Urban Seismic Network

Figures 1 and 2 together with Tables 1 and A-1 (Appendix A) summarize essential information for the
University of Utah's urban/regional seismic network, which included 202 stations (482 channels) at the end of
2003. The overall distribution of conventiona broadband and short-period stations in the Utah region is
effectively shown in Figure 1. Larger-scale maps in Figure 2 show better the locations of strong-motion
stations installed by the end of 2003 as part of the new urban network in the Wasatch Front area.

The urban/regional network consists of: 130 stations within our traditional Wasatch Front study area (dashed
rectangle, Figure 1); an additional 16 stations that provide expanded coverage of the Utah region; and another
56 stations covering neighboring parts of the Intermountain Seismic Belt, mostly from southeastern Idaho to
Y ellowstone National Park. Separate USGS support is provided for the Y ellowstone network. Asindicated in
Table 1 (see also Table A-1, Appendix A), 42 of the 202 stations were maintained by other institutions—
including 14 broadband stations operated by either the USGS, Sandia National Lab, or Lawrence Livermore
National Lab as part of the U.S. National Seismic Network. The University of Utah handled the field repair
and maintenance of 161 stations, 137 of which were sponsored by the USGS under this award. (One station,
DUG, has collocated USGS- and UUSS-maintained equipment.)

During the past three years, the University of Utah's modernized regional/urban seismic network has become
amodd outside of Cdiforniafor locally implementing the Advanced National Seismic System. Thisis
because of our successes in (1) integrating weak- and strong-motion recording and (2) developing an
effective real-time earthquake information system in advance of the 2002 Salt Lake City Winter Olympics.
Ours was the first network outside of Californiato locally customize and produce automatic ShakeMaps,
successfully implement the Earthworm Oracle Database for earthquake recording and alarms, engineer point-
to-multipoint digital telemetry, and complete the in-situ calibration of all broadband and strong-motion
stations. Significantly, we are already meeting every ANSS network performance objective listed in
Attachment A of the USGS's Program Announcement 04HQPAQ002 for seismic networks, issued in April
2003 (see Table 2).



RESULTS AND ACCOMPLISHMENTS
Overview of Seismicity

During the report period, we detected and anayzed approximately 5,100 seismic events. Of these 45 percent
were local earthquakes within or near our regional seismic network, 36 percent were regiona earthquakes and
teleseisms, and 18 percent were blasts. A tota of 2,314 earthquakes were located in the Intermountain
Seismic Belt, including 1,084 within the Utah region (Figure 3) and 827 within our standard Wasatch Front
region (38° 55'—42° 30' N, 110° 25'-113° 10' W). Nineteen earthquakes of magnitude 3 or larger occurred in
the Utah region (Figure 4, Table 3). The largest earthquakes were (1) a shock of magnitude (M) 4.3 that
occurred at 01:04 UTC on April 17, 2003, 6 km (4 mi) SSW of Levan in central Utah and (2) atriplet of
earthquakes of magnitude (M) 3.6, 3.6, and 3.7 that occurred respectively at 00:39, 00:40, and 00:43 UTC
on December 27, 2003. The latter earthquakes also occurred in central Utah, 12 km (8 mi) SW of Nephi and
16 km (10 mi) NNW of the April 17 earthquake.

Thirteen earthquakes in the Utah region during 2003 were documented as felt (Table 4). During the 2003
report period, the University of Utah Seismograph Stations issued four press releases immediately after
earthquakes in the Utah region that were either felt by many or larger than a set threshold magnitude of 3.5.
Mining-induced seismicity accounted for about 20 percent of the earthquakes located in the Utah region
during 2003. A total of 221 shocks (M £ 2.9) were located in known areas of underground coal-mining
within an arcuate zone extending counterclockwise from east of Price to 100 km southwest of it (Figure 3).

Real-Time Earthquake Information System

During the past three years, we have successfully (1) integrated weak- and strong-motion monitoring within a
modernized regional/urban seismic network and (2) developed an effective real-time earthquake information
system in advance of the 2002 Salt Lake City Winter Olympics. During the 2003 report period we modestly
expanded strong-motion instrumentation (ten new stations) in Utah's rapidly -growing Wasatch Front urban
corridor for emergency response and long-term risk reduction, and we began efforts to make our real-time
information system more robust. Accomplishments in 2003 included the following:

Earthworm — Our Earthworm system (hardware and software) for real-time earthquake monitoring and
automated aertsisin a constant state of development and is fragile (Nava et al., 2003). Our Earthworm
recording system consists of: (a) four computers (two Suns and two PCs) handling digitizing of incoming
analog signals or processing of incoming digital data streams; (b) two sets of independent, redundant systems
composed of four computers (two Suns and two PCs) interconnected to handle Earthworm core processing,
ShakeMap generation, database storage, short-term waveform storage, and Web-based Rapid Review
software; and (c) one Sun dedicated to Earthworm data exchange with other networks typically via
import/export modules. A separate PC provides data for the IRIS DMC via a publicly accessible Earthworm
waveserver. Efforts were made during 2003 to monitor the Earthworm system performance, fine tune the
system to maximize efficiency and minimize false earthquake alarms, transfer some functions from PCsto a
smaller number of more powerful SUN workstations, and install Earthworm v6.2 (5/2003). V6.2 is not yet
completely operationa due to problems with the Oracle database interface. We are working with the USGS
Earthworm team to resolve these problems.



Besides our Earthworm system, we are also running a parallel data-acquisition system. We operate a
Concurrent Corporation 7200-C computer, which digitizes incoming analog data streams, runs HAWK
processing software, and produces triggered event data filesin UW1 format.

ShakeMap and attenuation studies — We continued to implement ShakeMap and customize it for use in the
Wasatch Front urban corridor. We also worked with the ShakeMap Working Group, contributing code and
helping to prepare a ShakeMap Manual. During 2003, seven ShakeMaps were automatically generated and
posted to our Web site. They were later reviewed and/or reprocessed for quality assurance purposes.
ShakeMap developments involved initiating information transfer directly to a USGS Webserver, which is
backed up by Akamai, and to Weathercentral, a private forecast company that specializesin providing TV
stations with state of the art graphic capabilities. One new study this year involved using the ShakeMap
scenario option to (1) explore the sensitivity to the choice of attenuation relation and uncertainty in site
amplification and (2) model the MMI values for an M5.2 shock that occurred on the western edge of the Salt
Lake Valley (near the town of Magna, Utah) in 1962 (Pankow, 2003).

Because ShakeMap requires predictive relations for attenuation and site amplification, another part of our
ShakeMap development has involved testing the appropriateness of the chosen predictive relations and site
amplification. We have used ground-motion data acquired by our new strong-motion network, together with
site amplification factors devel oped for the Wasatch Front region, to validate the appropriateness of using
weak-motion attenuation relations developed in southern California. Further, we have used a worldwide
strong-motion data set assembled by Spudich et al. (1999) in order to determine a predictive relation for peak
horizontal ground velocity (PGV) for earthquakes in extensional tectonic regimes. The details of the PGV
regression and a correction we made to account for the 20% bias at rock sites reported by Spudich et al.,
(1999) are described by Pankow and Pechmann (2004). The new PGV regression has been incorporated into
our routine ShakeMap processing. It has also been given to the University of Nevada at Reno for ShakeMap
implementation in Nevada.

Ten new strong-motion stations— In FY 2003 we received ANSS equipment and funds for adding ten
stations to Utah's real-time urban strong-motion network, bringing the network total to 75 stations (Figure 2).
Strong-motion instruments (REF TEK ANSS-130) were received in mid-to-late June. Seven of the stations
were installed before September 30, 2003, and the remaining three stations were completed shortly thereafter.
The ten new stations include two urban reference stations in small buildings, four urban reference stations on
open ground, and four free-field rock stations. Installing and troubleshooting sequential versions of firmware
and software provided to us by ANSS instrument vendors for beta testing, both for new and earlier-instaled
instruments, were greatly time consuming. Magjor efforts were made to implement point-to-multipoint digital

radio telemetry in our Utah network using Time Division Multiple Access (TDMA) technology in order to
reduce operational costs. As a cost-savings measure, we started to convert 11 of our FY 2000 and FY 2001
strong-moation stations from frame-relay telephone to spread-spectrum radio (eight stations) and public
Internet (3 stations).

I ntegration of USGS/NSMP strong-motion data — The USGS Nationa Strong-Motion Program (NSMP)
operates severa digital strong-motion stations in the Wasatch Front area from which data are retrieved by
telephone remotely from Menlo Park, CA. During 2003 we began recording continuous data streams from
two more of these stations via telemetry links we installed; we now record data from four NSMP stations in
real time. We also use an import protocol to automatically receive from NSMP both parametric data (in XML
format) and waveform data for al their strong-motion stations in the Wasatch Front area operating with
telephone connections. The NSMP data usefully contribute to our ShakeMap database.



“ Earthquakes in the News’ — In mid-June 2003 our computer professional installed the listening script,
"Earthquakes in the News," enabling our UUSS home page to feature "Earthquakes in the News' links. By
completing this task, our network staff reached, in advance, full compliance with all of the network-
performance expectations (except for standards yet to be developed) set forth by the USGS in Program
Announcement 04HQPA0002 for funding seismic networks during FY 2004-2006.

Seismicity Remotely Triggered by Denali Fault Earthquake—and Other Studies

Triggered seismicity following the Denali Fault earthquake — Immediately following the arrival of the
surface waves from the M,, 7.9 Denali Fault, Alaska, earthquake on November 3, 2002, the University of
Utah's regional seismic network recorded an abrupt increase in local microseismicity throughout most of
Utah's main seismic belt. During 2003 we undertook a detailed analysis of the triggered seismicity. The
elevated selsmicity was most intense during the first 24 hours (> 10 times the average prior rate) but
continued above the background level for 25 days (at the 95% confidence level) in most areas. Statistical
analyses allow us to regject with >95% confidence the null hypothesis that the observed increases were due to
random occurrence. Data from 37 ANSS strong-motion stations in Utah contributed to the estimation and
mapping of peak dynamic stresses that occurred during the passage of surface waves through Utah; the level
of the peak dynamic stresses (1.2- 3.5 bars) is consistent with the interpretation of remote triggering of local
seismicity by the Alaskan earthquake, which occurred more than 3000 km from our study region. Initial
results were presented at the 2002 Fall American Geophysical Union meeting (Pankow et al., 2002) and were
also reported in the Utah Geological Survey’s public outreach bulletin (Pankow et al., 2003). A full
manuscript prepared for a forthcoming special issue of the Bulletin of the Seismological Society of America
on the Dendi Fault earthquake is included here as Appendix B.

Receiver-function analysis— In conjunction with a University of Utah graduate student we have been
analyzing teleseismic earthquakes recorded by both regional broadband instruments and the ANSS urban
strong-motion network. The student has been migrating these data to image crustal/upper-mantle structure.
Preliminary results were presented at the 2003 Fall AGU mesting (Sheng et a., 2003).

Space Shuttle Columbia — In response to requests via the USGS from NASA, which was seeking clues to
the possible locations of debris from the space shuttle Columbia, we undertook analyses of data from our
seismic network stations in southwestern Utah in the vicinity of Columbias February 1, 2003, ground track.
Ultimately, analyses of University of Utah data by J. C. Pechmann and others did not lead to the recognition of
any seismic signals that could unambiguously be attributed to falling objects hitting the ground. However,
besides Columbia's primary sonic boom, ather unidentified signals were recognized which could have been (a)
downward-refracted or reflected sonic booms from the shuttle, (b) seismic and/or sonic waves generated by
impacts of shuttle debris, or (c) signals of some other origin.

Coal-mining-induced seismicity — We continued studies of seismicity induced by underground coal mining
in east-central Utah (Arabasz et al., 2004; McGarr et al., 2004; see also Arabasz et al., 2002a,b) in order to
serve the needs of (1) mining engineers and mine operators concerned with mine safety and (2) decision-
makers dealing with the potential hazards of mining seismicity to off-site structures and facilities. The studies
involved cooperative research with the U.S. Geological Survey and the U.S. Bureau of Reclamation, including
accelerographic recording and ground-motion modeling of the mining seismicity in order to evaluate the
hazard of surface ground shaking.

During 2003 we devel oped partnerships with three coal-mining companies to install and operate above-mine

seismic stations at three coal mines in the Book Cliffs coal mining region. Each of these three stations has a
digital datalogger, a three-component accelerometer, and a vertical-component short-period seismometer.
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Continuous data are digitally telemetered to our network operations center in Salt Lake City and are integrated
with our regional/urban network recording. These three stations (BCW, DCM, BCE) are shown in Figure 1.

Accomplishments in Ongoing Network Oper ations
Noteworthy accomplishments during the report period included the following:

Continued maintenance and operation of short-period stations— The short-period stations in our seismic
network continue to be fundamentally important for earthquake detection and hypocentral resolution. Forty-
five short-period stations in the Wasatch Front area are operated and maintained as part of this cooperative
agreement (Appendix A). Asthe result of a systematic maintenance program, started in the mid-1990s, to
upgrade the field electronics and site hardware at every short-period station in our Utah network, these
stations perform with exceptional reliability. All stations have a standardized UU-designed VCO, seismometers
have systematically been refurbished by the manufacturer, and station polarities have been verified or
corrected (only one reversed station currently). Instrument response files are routinely updated for all
stations and posted to the IRIS DMC.

I mproved magnitude determination for very small earthquakes — We modified our version of the
earthquake location program Hypoinverse (originally written by F. W. Klein, USGS) to compute and report
negative magnitudes instead of discarding them, and we changed the default magnitude from 0.00 to -9.99.
These changes were needed because in some areas of our network we are able to locate very small
earthquakes for which some or all of the single-station coda magnitude (Mc) estimates are less than zero.
Negative magnitudes are set to 0.0 before submission to the Quake Data Distribution System (QDDS) due to
limitations in the QDDS software.

Analysis of optimal record lengths for automatic determination of local magnitude (M_) — We anayzed
the times of more than 10,000 maximum peak-to-peak amplitude measurements on synthetic Wood-Anderson
records to provide a better basis for selecting the time intervals on such records to be analyzed in automatic
local magnitude determinations. We found that 98% of the maximum peak-to-peak amplitudes occurred
between the P-wave arrival time and 20 sec after the estimated Sg arrival time. Restricting the search for
maximum peak-to-peak amplitudes to these time windows will minimize errors in automatic M,
determinations caused by including maximum amplitude measurements from the wrong seismic events.
These errors are sometimes very large.

Near-real-time data exchange with other networks — Throughout the report period, we continued to
exchange waveform datain near-real time with the National Earthquake Information Center, the Idaho
National Engineering and Environmental Laboratory, the Montana Bureau of Mines and Geology, Brigham
Y oung University (Idaho), the U.S. Bureau of Reclamation, and the University of Nevada, Reno. In March
1993, we began exchanging waveform data with Northern Arizona University. These data exchanges are
done via the Internet using Earthworm import/export software modules (see Table 1).

Assistance to other seismic networks — In February 2003 our network staff successfully configured and
installed a PC-based (Pentium I11) Earthworm system in Flagstaff, Arizona, for the Arizona Earthquake
Information Center (AEIC) at Northern Arizona University. Help was provided by Doug Bausch of FEMA
(formerly of AEIC) and Dave Brumbaugh, director of AEIC. The Arizona Earthworm system is set up for
remote system administration and control at the University of Utah. Continuous data from the 8-station
Northern Arizona Seismic Network are exported via Internet to the University of Utah and then relayed to the
IRISDMC. Help to other networks also included the following: (1) we provided to Mike Stickney, the
operator of Montana's regional seismograph network, UUSS customized software for calculating Richter local
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magnitude (M) from broadband waveforms; we also gave him atutorial on creating dataless SEED volumes
(including instrument response information) for submission of his network data to the IRISDMC; (2) we
provided customized ShakeMap modules to the University of Washington seismic network; (3) we provided a
ShakeMap module using the new Pankow and Pechmann (2004) ground-motion attenuation relations to the
University of Nevada at Reno; (4) in April 2003, two of our group met in San Juan, Puerto Rico, with
operators of the Puerto Rico seismic network during SSA2003 to offer technical advice and help on
expansion and modernization of that network.

Archiving waveform data — All digital waveform data collected by the University of Utah regional/urban
seismic network during the report period were submitted to the IRIS DMC in SEED format. Continuous
waveform data from all stations we maitain and operate have been submitted to the IRIS DMC on a daily
basis since June 2002. Currently, the IRIS DMC retrieves data from our Earthworm-system wave tanks
severa times per day, Using a different system, submission of continuous waveform data from our
broadband stations began on June 19, 2000, and on April 19, 2001, for continuous waveform data from our
strong-motion stations.

Submisson of earthquake catalog data to ANSS information outlets — During the report period,
Earthworm automatic (non-human-reviewed) hypocenters and magnitudes for earthquakes of magnitude 2.5
and larger in our authoritative regions (Utah and Y ellowstone National Park) were automatically submitted to
the Quake Data Distribution System (QDDS) of the Advanced National Seismic System. Anayst-determined
hypocenters and magnitudes for al earthquakes in our authoritative regions were submitted to QDDS as they
were completed. These same data were automatically submitted to the ANSS catalog four times per day
during the Monday-Friday work week. Events submitted to QDDS are automatically posted on the ANSS
RecentEqs Web pages.

Miscellaneous

ANSS planning activities — During 2003, a 12-member state-level advisory committee continued to guide
the development and effective use of urban strong-motion monitoring in Utah. The Utah Advisory Committee
for Urban Strong-Motion Monitoring was created in FY 2001, both as part of the ANSS management
structure and as part of Utah's state earthquake program. The advisory committee met on January 16, 2003
(for minutes, see < http://www.seis.utah.edu/urban/011603.shtml >). The committee identified 23 candidate
sites for installing 15 (later reduced to ten) additional ANSS strong-motion stations in Utah’s Wasatch Front
areaduring FY 2003. The committee affirmed that the criteria for site selection would continue to be (1)
geographic distribution (particularly in uninstrumented areas of rapid development), (2) sampling of different
geologica site-response units, and (3) proximity to important lifelines and urban infrastructure. In early- to
mid-2003, we explored sites and coordinated with Alena Leeds (USGS/Golden) in connection with a new
ANSS national backbone station near Cedar City in southwestern Utah.

Next-generation ground-shaking hazard maps — In April 2003 we participated in planning workshops
sponsored by the USGS and the Utah Geological Survey for developing the next generation of ground-shaking
hazard maps in Utah. Four seismologists in our network group are now serving on a 13-member Utah
Ground-Shaking Working Group, and two others are serving on a Utah Quaternary Fault Parameter Working
Group, enabling close coordination between our UUSS/ANSS urban strong-motion network and researchers
addressing local ground-motion-related issues.



AVAILABILITY OF DATA

All seismic waveform data archived by the University of Utah Seismograph Stations are available upon request
directly from our office (typically delivered to the user in SAC ASCII or binary format). Alternatively,
waveform data can be retrieved from the IRIS DMC using their SeismiQuery Web tool at
<http://mww.iris.washington.edu/SeismiQuery> (delivered in a variety of formats). Earthquake catalog data
for the Utah region are available (1) via anonymous ftp <ftp.seis.utah.edu/pub/UUSS catalogs>, (2) viathe
Advanced National Seismic System's composite earthquake catalog < http://quake.geo.berkeley.edu /cnss/cnss-
catalog.html>, or (3) by e-mail request to webmaster @seis.utah.edu. See also the University of Utah
Seismograph Stations homepage at <http://mwww.seis.utah.edu>. The contact person for data requests is Relu
Burlacu, tel: (801) 585-7972; e-mail: burlacu@seis.utah.edu.
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Tablel

Overview of the University of Utah Regional/Urban Seismic Networ k

December 2003
Networ ks Forming Part of Regional Operation: CODE | Stationg/channéls
%) Utah Region Seismic Network (URSN) uu 138/371
Y ellowstone National Park Seismograph Network (Y SN) WY 23/33

TOTAL StationsChannelsOper ated: 161/404

Import data from: CODE | Stationg/channds
Brigham Y oung University (Idaho) Selsmic Network RC 1
(formerly Ricks College)
Montana Regiona Seismic Network MB 5/5
Idaho Nationa Engineering and Environmental Laboratory IE s
Seismic Network
Western Great Basin/Eastern Sierra Seismic Network NN 6/6
University of Nevada, Reno
US Bureau of Reclamation Seismic Networks RE 2/2
US National Seismic Network usS 12/36
US National Strong Motion Program (via EW module getfile; NP Varidble

triggered data from instruments in Wasatch Front area)

US Nationa Strong Motion Program (direct data stream) NP 412
Sandia Nationa Laboratory—L eo Brady Network LB 1/3
USGS Albuquerque Seismological Laboratory V] 13
Northern Arizona University Seismic Network AR 33
Total StationgChannels Imported: 42/78

TOTAL Stations/Channds Recor ded: 202/482

Export Data To:

Stations/Channdls

Brigham Y oung University (Idaho) Seismic Network 22/30
(formerly Ricks College)
Montana Regiona Seismic Network 8/8
Idaho Nationa Engineering and Environmental Laboratory 7
Seismic Network
Northern Arizona University Seismic Network 212
US National Seismic Network Export HPY P messages
US Nationa Seismic Network 18/44
IRIS Data Management Center (via ew2mseed) 167/364
Total Stations/Channels Exported: 224/455

(All real-time data exchange is via Earthworm Import/Export unless otherwise noted)

(.evt and xml files)
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Earthquakesin the Utah Region of Magnitude 3.0 and L arger, 2003

Table3

DATE ORIGTIME LATITUDE LONGITUDE DEPTH MAG NO. GAP DMN RMS
030103 05:02:12.16  41°16.48 111°48.12 11.9 3.6W 47 68 1 0.24
030201 20:37:31.24  41°49.71 112012.72 0.2 3.2wW 37 57 15 0.15
030211 09:00:42.19 38°41.85' 112°15.54 0.4* 3.3W 2 9% 2 0.18
030325 21:11:36.02 36°51.44' 113°00.11 4.3* 3.0W 7 230 24 0.18
030417 01:04:19.07 39°30.78 111°54.29 0.9 4.3W 37 43 8 0.45
030510 17:13:20.84  37°41.78 113°12.60 57* 3.0W 13 71 23 0.28
030510 17:20:00.15 37°42.62 113°11.67 3.0* 3.2W 13 70 23 0.27
030708  02:20:33.77 36°57.22' 111°47.16 6.6* 3.3W 16 80 45 0.31
030708 02:55:46.84  36°57.39' 111°47.17 7.0* 31w 14 80 45 031
030712 01:54:40.04  41°17.14 111°36.88 9.2* 3.5W 45 112 22 0.19
031107  06:52:56.02 36°57.20 111°46.43 7.2* 31w 11 110 a4 0.30
031117 23:18:52.15  40°20.93 111°10.08 12.6 3.0W 36 149 10 0.19
031129 22:33:09.15 38°26.95' 112°30.12 3.1* 3.2W 18 82 29 0.24
031212 21:04:13.47 39°32.59 111°56.27 0.7* 3.2W 41 86 1 0.25
031226  00:33:06.15 38°59.46' 111°56.11 3.0* 3.0W 26 73 14 0.20
031227  00:39:24.37 39°38.91' 111°56.99 1.9* 3.6W 30 87 20 0.23
031227  00:40:41.05 39°38.39' 111°56.79 11* 3.6W 24 9% 19 0.22
031227 00:43:23.91 39°38.95' 111°57.42 18 3.7W 1 133 20 0.18
031227  13:19:00.95 39°38.67" 111°57.46 2.3* 3.0W 30 98 20 0.22

number of earthquakes= 19

* indicates poor depth control

W indicates Wood-Anderson data used for magnitude cal culation



Table 4

Felt Earthquakesin the Utah Region
January 1 — December 31, 2003

Date Time' Felt Information® Latitude | Longitude | M agnitude§
Jan 2 (MST) 22:.02 MST ClIM, ShakeMap. Utah. 41°16.44 111°48.17 M., 36
Jan 3 (UTC) 05:02UTC Felt (1V) at Huntsville, Mc39
Ogden; (111) at Eden,
Paradise, Franklin, ID; (I1)
at Bountiful, Brigham City,
Clearfield, Centerville,
Croydon, Farmington,
Hyde Park, Kaysville,
Layton, Logan, Mantua,
Morgan, Providence,
Richmond, Roy, Salt Lake
City, Willard.
Feb 1 13:37 MST ShakeMap. Utah. Fdt (111) | 41°49.68 11201275 M, 3.2
20:37UTC at Clarkston, Fielding, Mc33
Garland, Plymouth.
Feb 11 02:00 MST Utah. Felt (111) at Monroe. | 38°41.85 11201554 M, 33
09:00UTC Mc32
April 16 (MDT) 19:04 MDT ShakeMap. Utah. Felt (IV) | 39°30.77' 111°54.29 M_ 43
April 17 (UTC) 01.04UTC at Nephi and (I1) at Mc4.7
Fairview. Also felt at
Delta, Ephraim, Levan,
Mount Pleasant.
July 7 (MDT) 20:55 MDT Arizona. Felt at Page, AZ. | 36°57.39 11104717 M, 32
July 8 (UTC) 02:55UTC Mc3.1
July 11 (MDT) 19:54 MDT ClIM, ShakeMap. Utah. 41°17.14 111°36.87 M., 35
July 12 (UTC) 01:54UTC Felt (111) at Huntsville, Mc39
Ogden, Roy. Also felt at
Draper, Layton, Salt Lake
City, Wellsville
Aug 2 (MDT) 23:16 MDT Utah. Felt (111) at Cedar 37°39.80 113¢16.71 M, 29
Aug 3 (UTC) 05:16 UTC City. Alsofelt at Beryl. Mc30
Dec 12 14:04 MST ClIM. Utah. Felt (11) at 39 32.59 111°56.27 M, 32
21:.04UTC Nephi. M 32
Dec 25 (MST) 17:33MST CIIM. Utah. Felt (I1) at 38°59.46 111°56.11 M., 30
Dec 26 (UTC) 00:33UTC Salinaand Nephi. Mc3.0




Table 4 (continued)

Date Time' Felt Information® Latitude | Longitude | Magnitude®
Dec 26 (MST) 17:39 MST CIIM, ShakeMap. Utah. 3903891 111°56.99 M_ 36
Dec 27 (UTC) 00:39UTC Felt (111) at Nephi and M¢38
Ephraim; (I1) at Spanish
Fork.
Dec 26 (MST) 17:40 MST CIIM, ShakeMap. Utah. 393839 | 111°56.79 M, 36
Dec 27 (UTC) 00:40 UTC Felt (111) at Nephi. Mc4.0
Dec 26 (MST) 17.43MST CIIM, ShakeMap. Utah. 39°38.95 111°57.42 M 37
Dec 27 (UTC) 00:43UTC Felt (111) at Nephi; (11) at Mc35
Fairview.
Dec 27 06:19 MST CIIM. Utah. Felt (I1) at 39°38.67 111°57.46 M_ 3.0
13:19UTC Nephi. Mc3.1

T Times are listed both as Loca Time—Mountain Standard Time (MST) or Mountain Daylight Time (MDT)—and as

Universal Coordinated Time (UTC).

¥ ClIM indicates the availability of a Community Internet Intensity Map (http://pasadena.wr.usgs.gov/shake/imw
farchives.html), compiled by the U.S. Geologica Survey (USGS); ShakeMap indicates the availability of maps of ground-
shaking (http://www.seis.utah.edu/shake/ar chive), produced by the University of Utah Seismograph Stations (UUSS).
Roman numerals correspond to the Modified Mercalli intensity scale. Unless otherwise indicated, felt information isfrom

the USGS's (1) PDE Monthly (or) Weekly Listing Files (http://neic.usge.gov/neis/data_services ftp_files.html) and/or (2)

ClIM reports.

§ Richter local magnitude (M) or coda magnitude (M ¢) determined by UUSS. If labeled “NEIC,” data are from the
National Earthquake Information Center of the USGS.
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Seismicity of the Utah Region
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Figure 3. Earthquake epicenters (N=1,084) located by the University of Utah
Seismograph Stations, superposed on a map of Quaternary (geologically young)
faults compiled by the Utah Geological Survey. The Wasatch fault is shown in bold.
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Figure 4. Epicenter map of shocks of magnitude 3.0 and larger in the
Utah Region during the period January1-December 32, 2003 (base map as in
Figure 3). Epicenters, keyed to Table 1, are labeled by UTC date and size.
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EXPLANATION OF TABLE

UURSN Code: Station code used in routine processing. Due to processing software limitations, the station
code may not be the station code used by the original operator.For multi-component stations, the vertical,
east-west, and north-south high gain (low gain) components are identified by an appended Z(V), E(L), and
N(M), respectively.

L ocation: General description of station location. YNP = Ydlowstone National Park.

SEED Station: The SEED (Standard for the Exchange of Earthquake Data) station code used by the original
operator.

SEED Channel: The SEED format uses three letters to name seismic channels. See
<<http://ww.iris.washington.edu/manua §'SEED_appA .html>> for information about the SEED channel
naming convention. Relevant sections are reproduced below. In the SEED convention, each letter describes
one aspect of the instrumentation and its digitization. The first letter specifies the general sampling rate and
the response band of the instrument. Band codes used in this table include:

Band Code Band Type Sample Rate Corner Period
E Extremely short period = 80 Hertz < 10 seconds
H High broadband = 80 Hertz = 10 seconds
B Broadband = 10to < 80 Hertz =10 seconds
S Short period = 10to < 80 Hertz < 10 seconds

The second letter specifies the family to which the sensor belongs. Sensor families used in this table are:

Instrument Code Description

H High gain seismometer
L Low gain seismometer
N Accelerometer

The third letter specifies the physical configuration of the members of a multiple axis instrument package.
Channel orientations used in this table are:

ZEN Traditional (Vertical, East-West, North-South)
Number of Channels. Total number of waveform channels recorded.
Network Code: The FDSN (Federation of Digital Seismographic Networks) registered network code. See
<<http://www.iris.washington.edu/FDSN/networks.txt>> for information about registered seismograph
network codes. Network codes referenced in this table:

Network Code  Network name; Network operator or responsible organization

AR Northern Arizona Seismic Network, Northern Arizona University
LB Leo Brady Network; Sandia National Laboratory
IE Idaho National Engineering and Environmental Laboratory
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U
MB
NN
NP

RC
RE

uu

us
wy

IRIS'USGS Network; USGS Albuquerque Seismological Laboratory
Montana Regional Seismic Network; Montana Bureau of Mines and Geology
Western Great Basin; University of Nevada, Reno

Nationa Strong Motion Program; U.S. Geological Survey

Formerly Ricks College Network; Ricks College, 1daho; now BY U-ldaho

U.S. Bureau of Reclamation Seismic Networks; U.S. Bureau of Reclamation,
Denver Federal Center

University of Utah Regiona Network; University of Utah

US National Network; USGS Nationa Earthquake Information Center
Y ellowstone Wyoming Seismic Network; University of Utah

Latitude, Longitude: Sensor location in degrees and decima minutes; North latitude, West longitude.

Elevation: Sensor dtitude in meters above sea level.

Sensor

L4, L4AC
S13, 18300
Ranger
40T

3T

3ESP
FBA23

Epi Sensor
Applied Mems
WA Sim

Digitizer
Masscomp

K2

Etna
72A-07
72A-08
ANSS-130

RT-130

Telemetry
Andog
Digital
Hardwired
None

Description

Mark Products short-period seismometer
Geotech S13 or 18300 short-period seismometer
Kinemetrics Ranger short-period seismometer
Gurap CMG-40T broadband seismometer
Guralp CMG-3T broadband seismometer
Gurap CMG-3ESP broadband seismometer
Kinemetrics accelerometer

Kinemetrics accelerometer

Applied Mems accel erometer

Wood-Anderson displacement seismometer (electronically simulated)

Description
Concurrent Computer Corporation (formerly Masscomp) 7200C computer(with 12-bit
digitizer)

Kinemetrics Altus Series K2 (19-bit resolution field digitizer)

Kinemetrics Altus Series Etna (19-bit resolution field digitizer)

Refraction Technology (REF TEK) moded 72A-07 (24-bit field digitizer)
Refraction Technology (REF TEK) model 72A-08 (24-bit field digitizer)
Refraction Technology (REF TEK) model 130-ANSS/02 (24-bit resolution
field digitizer)

Refraction Technology (REF TEK) model RT-130 (24-bit resolution

field digitizer)

Description

Data transmission is analog aong part of the transmission pathway
Data are converted to digital form at the station site

Direct physical cable connection to computer recording system
On-site recording system
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Sponsor (or Operator for stations marked by * in preceding columns)

USGS U.S. Geological Survey

Utah State of Utah

ANSS Advanced National Seismic System

INEEL Idaho National Engineering and Environmental Laboratory
USBR U.S. Bureau of Reclamation

LLNL Lawrence Livermore National Laboratory

Sandia Sandia National Laboratory

BYU-I Brigham Y oung University, Idaho (formerly Ricks College)
MBMT Montana Bureau of Mines and Geology

NSMP National Strong Motion Program, U.S. Geologica Survey
UNR University of Nevada, Reno

NETWORK CHANGES DURING OCTOBER 1-DECEMBER 31 (ltalicized rowsin Table)*

October 8, 2003 Begin continuous recording of stations LCU and OSS

October 15, 2003 Begin on-site triggered recording of station MOR components EN[ZEN]
October 27, 2003 Begin on-site triggered recording of station EMF components EN[ZEN]
October 31, 2003 Begin continuous recording of new broadband digital telemetry station at YNR
November 6, 2003  Begin continuous recording of stations PCL and EMF

November 7, 2003  Begin continuous recording of station SPS

November 11, 2003 Begin on-site triggered recording of station COY components EN[ZEN]
November 24, 2003 Begin continuous recording of station CWR

November 25, 2003 Begin continuous recording of station COY

* Italicized rows for stations not noted among the network changes have updated |ocations based on
GPS surveying and provided by field engineering staff (December 31, 2003). The MBMT dtation
QLMT isan exception, as this station was moved to a dightly different location.

Note: MBMT gation GCMT was mistakenly included in previous station tables beginning in 2002.
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Triggered Seismicity in Utah from the November 3, 2002, Denali Fault Earthquake

Kris. L. Pankow, Walter. J. Arabasz, James. C. Pechmann, and Susan. J. Nava

Abstract
Immediately following the arrival of the surface waves from the My, 7.9 Denali Faullt,

Alaska, earthquake on November 3, 2002, the University of Utah regional seismic network
recorded an abrupt increase in local microseismicity throughout most of Utah's main seismic
belt. We examined this seismicity increase in the context of the regional background seismicity
using a catalog of 2,651 earthquakes from January 1, 2000 to June 30, 2003. Statistical analyses
of this catalog above spatially- varying magnitudes of completeness ranging from 1.2 to 1.7 allow
us to reject with >95% confidence the null hypothesis that the observed increases were due to
random occurrence. The elevated seismicity was most intense during the first 24 hours (>10
times the average prior rate) but continued above background level for 25 days (at the 95%
confidence level) in most areas. We conclude that the increased seismicity was triggered by the
Denali Fault earthquake, which occurred more than 3000 km from the study region. High peak
dynamic stresses of 0.12 MPato 0.35 MPathat occurred during the passage of the Love waves
are consistent with the interpretation of triggering. The peak dynamic stresses were estimated by
measuring peak vector velocities at 43 recording sites, 37 of which were relatively new strong-
motion stations of the Advanced National Seismic System.

The triggered seismicity ranged in magnitude (M. and/or M, ) from less than O to 3.2 and
was widely distributed across the state, primarily in seismically active regions. In contrast to
many previously-published observations of remotely-triggered seismicity, the majority of the

triggered earthquakes did not occur near Quaternary volcanic vents or in areas of magma-related
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geothermal activity. In several areas the triggered seismicity was spatially clustered (>5
earthquakes each separated by < 5 km). Double-difference relative relocations for the
earthquakes in three of these clusters indicate that most, but not al, of the triggered events were
spatially separated from source zones of prior seismicity during 2000-2003. Foca mechanisms
for the two largest triggered events have northeast- to northwest-trending tension axes, which are
unusual for the region where they occurred. The temporal decay of the triggered activity was
similar to that of Utah aftershock sequences and can be described by the modified Omori’s law
with ap-value of 0.6 to 0.7. The frequency- magnitude distribution of the triggered earthquakes
isalso similar to that of Utah aftershocks, and for the study area as a whole can be described by
the Gutenberg-Richter relation with a b-value of 0.81+0.16. These similarities between the
triggered seismicity and Utah aftershock sequences suggest the possibility that the causative

mechanism could be the same for both.

I ntroduction

In 1992, following the My, 7.3 Landers, California, earthquake, the first unambiguous
observations were made of an earthquake triggering smaller earthquakes at distances of up to
1300 km (Hill et al., 1993; Bodin and Gomberg, 1994; Anderson et al., 1994). At thetime, this
was a remarkable observation because aftershocks ordinarily occur at distances of up to one or
two rupture lengths from the mainshock rupture, which for the Landers earthquake is 70 to 140
km (Hill et al., 1993). Later, in 1999, remotely-triggered seismicity was detected following both
the My, 7.1 Hector Mine, California, earthquake (Gomberg et al., 2001; Hough and Kanomori,
2002; Glowacka et al., 2002) and the M, 7.4 Izmit, Turkey earthquake (Brodsky et al., 2000). In
the above three cases, the triggered seismicity was recorded by modern seismic networks and
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recognized shortly thereafter. In light of these observations, earthquake catal ogs have been
scoured to search for past instances of remotely-triggered seismicity. Such studies have revealed
that the 1811 and 1812 M, 2 7 New Madrid earthquakes and the 1906 My, 7.8 San Francisco
earthguake triggered seismicity at distances of two or more main shock rupture lengths, which in
these cases is hundreds of kilometers (Hough, 2001; Hough et al., 2003; Meltzner and Wald,
2003). At The Geysers geothermal field in California, it appears that increases in seismicity
following distant earthquakes occur regularly (Stark and Davis, 1996).

Arguably the most spectacular documented case of remotely-triggered earthquakes
occurred following the November 3, 2002 M,, 7.9 Dendli fault, earthquake (DFE; Fig. 1). This
earthquake, which was located in southern Alaska, triggered earthquakes more than 3000 km
away throughout much of the western continental U. S. (Gomberg et al., 2004; Husen et al.,
2004; Husker and Brodsky, 2004; Prejean et al., 2004). The triggered seismicity following the
Landers and Hector Mine earthquakes seemed to occur preferentially in regions with recent (£ 1
million years old) volcanic activity or in regions of magma-related geothermal fluid flow (Hill et
al., 1993; Gomberg et al., 2001; Glowacka et al., 2002). Thisis not the case with the DFE
triggering. Although the most productive region of DFE-triggered seismicity was in and near the
Y ellowstone caldera (Husen et al., 2004), locations of seismicity increases following the DFE
are not clearly correlated with areas of recent volcanics or magma-related geothermal activity
(Gomberg et al., 2004). The triggered seismicity in the Utah region is a good example of this
lack of correlation, as will be shown in this paper.

Utah is situated astride the eastern boundary of the Basin and Range province and isa
seismically active area. The historical seismicity is characterized by diffuse, small- to moderate-
size (M £ 6.6), normal, oblique-normal, and strike-dlip earthquakes concentrated within the
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Intermountain Seismic Belt (1ISB)>—a band of seismicity extending from Montana to Arizona
(Smith and Arabasz, 1991; Arabasz et al., 1992). The region also has the potential for large (6.5
£ M £ 7.5) earthquakes on major normal faults including the ~380-km long Wasatch fault.
However, in the time-period of instrumental recording, the Wasatch fault appears amost
quiescent (Smith and Arabasz, 1991; Arabasz et al., 1992). The ISB in Utah is characterized by
relatively high heat flow (Morgan and Gosnold, 1989) and EW to ESEWNW extension
(Arabasz and Juliander, 1986; Bjarnson and Pechmann, 1989; Zoback, 1989). There are
numerous Quaternary volcanic vents in Utah—the most recent < 660 + 170 years old (Valastro
et al., 1972)—located primarily in the southwestern part of the state (Fig. 2). Thereare also
numerous hot springs throughout the state. However, these hot springs are not associated with
magma bodies but are instead related to ground water moving from depth to the surface along
major faults (Ehlers and Chapman, 1999).

The purpose of this paper is to carefully document the observations indicating that the
DFE triggered increased seismicity throughout the Utah region. We also compare the spatial and
temporal characteristics of the triggered earthquakes to those of aftershocks and other
earthquakes in this region. We conclude by discussing our observations in the context of
previously proposed triggering mechanisms. The most significant aspects of this study are that:
(2) the triggering occurred at distances greater than 3000 km, (2) unlike most places where
triggered seismicity has been documented, the triggered seismicity in Utah was widespread and
not preferentially located near volcanic source regions, and (3) data from the University of Utah
regional seismic network enable us to rigoroudly quantify the statistical significance, frequency-

magnitude distribution, temporal decay rate, and duration of the triggered seismicity.
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Waveform Analysis

The DFE produced 340 kmof surface rupture along three faults (Susitna Glacier, Denali, and
Totschunda) in southern Alaska (Eberhart-Phillips et al., 2003). The composite mechanism was
dextral strike-dlip (Harvard centroid moment tensor) and the earthquake ruptured with strong
directivity to the southeast (Eberhart-Phillips et al., 2003; Velasco et al., 2004). The state of
Utah is located within 10° of the great circle path of directivity from the DFE (Fig. 1). Even
though Utah is more than 3000 km (9 rupture lengths) from the DFE epicenter, the surface waves
from this event caused a mgjority of stations located in Utah and recorded by the University of
Utah Selsmograph Stations (UUSS) regional network to clip: nearly all UUSS high-gain, analog
telemetry, short period instruments and most of the horizontal component broadband digital

telemetry instruments operated by UUSS and the U.S. Geological Survey in Utah.

Although most of the broadband instruments were clipped by the surface waves of the DFE,
the DFE was well-recorded by the strong- motion stations of the Advanced National Seismic
System (ANSS). Using these recordings, we were able to estimate the peak dynamic stress
(PDYS) at the surface generated by the passage of the surface waves at 43 recording sites (37 of
which were relatively new ANSS strong-motion stations). These stations are located from 3%° N
to 42° N and 110.5° W to 113° W. Following the method of Hill et al. (1993), the PDS
calculations were done by converting the acceleration records to velocity in the pasdand 0.02 to
0.25 Hz and then calculating a peak vector velocity. In almost al cases this peak correspondsin
time to the passage of ~15-second period Love waves. The PDS s estimated by multiplying the
peak vector velocity by W, where U is the shear modulus (33,000 MPa) and 3 is the shear
velocity (3300 m/s). The PDS values in Utah from the DFE range from 0.12 MPato 0.35 MPa

with an average of 0.23 MPa. Following the 1992 Landers and 1999 Hector Mine, California
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earthquakes, PDS values (calculated using either peak vector velocities or peak horizontal
velocities) ranged from 0.1 MPa— 4.5 MPain regions of triggering (Gomberg et al., 2001). In
Greece, aregion aso characterized by neither active volcanism nor geothermal activity, the
average PDS (calculated using peak horizontal velocities) following the Izmit, Turkey
earthquake was 0.18 MPa (Brodsky et al., 2000). Thus the PDS values estimated in Utah
following the DFE are consistent with other measurement s of PDS where triggered seismicity
has occurred.

The evidence most suggestive that the DFE triggered earthquakes in Utah is the abrupt
increase in seismicity following the passage of the surface waves. Figure 3 shows 1-Hz highpass
filtered vertical-component broadband recordings from three northern Utah stations beginning an
hour before the arrival of the DFE seismic waves and ending 2.7 hours after. On these
seismograms it can be seen that no local earthquakes were recorded in the hour preceding the
arrival of the P waves from the DFE (P-wave arrival shown in Fig. 33). However, after the
passage of the surface waves (approximate in time to Fig. 3b) many local earthquakes were
recorded at these stations. The local events appear as spikes in the long-time window. Expanded
time sections for sample events are shown in Figure 3c-f. On the three records shown, there are
> 10 spikes (local events) in the first hour following the DFE body waves (3400- 7000 sec).

Small local events continued at an enhanced rate for the remainder of the time period shown. By
examining the broadband records, we determined that the onset of the increased seismicity began
with the passage of the Love waves. The first locatable earthquake appears in the seismogram as
a high frequency signal on the shoulder of 15- to 20-sec period Love waves (Fig. 4). Thisfirst

triggered earthquake (M, 2.1) occurred ~20 km east of Salt Lake City, Utah.
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Earthquake Catalog
Compilation

For a more detailed study, we used a catalog of earthquakes in the Utah region for the
time period January 1, 2000, through June 30, 2003. The time period spanned by this catalog is
long enough to enable the calculation of meaningful seismicity rate statistics before and after the
DFE but short enough that the changes in the network detection threshold during this time should
be minimal. The vast mgjority of the 2,651 earthquakes in this catalog are from routine
processing of UUSS regional seismic network data. However, as described later, we made a
major effort to improve the completeness of the catalog during the first few hours after the DFE
when the DFE surface waves interfered with the normal UUSS data processing. Quarry blasts
have been removed from the catalog based on location, time of day, and informationprovided by
the quarry operators. We have also removed all seismic events from areas in east-central Utah
dominated by mining-related seismicity (see Arabasz et al., 1997).

The routine network data processing during the time period of interest utilized data from
time windows containing potential seismic events identified by the triggering algorithm of
Johnson (1979). P- and S-wave arrival times were picked for local seismic events found in these
time windows and used to compute hypocentral |ocations with a modified version of the
computer program Hypoinverse (Klein, 1978) and a set of three region specific velocity models
(see Navaet al., 1990). If possible, local magnitude (M) was computed from maximum peak-
to-peak amplitudes on paper or synthetic Wood-Anderson seismograms—the latter created
primarily from UUSS and USNSN broadband digital telemetry data. Coda magnitude (M), a
calibrated estimate of M, was computed for most of the earthquakes using gain-corrected

measurements of seismic signal durations on short-period, vertical-component velocity sensors
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(Pechmann et al., 2001; Arabasz et al., 2003). The preferred magnitude is M when M, values
from two or more stations are available to be averaged. Magnitudes were determined for 99.5%
of the events. For further details on UUSS data acquisition and processing see Nava et al. (1990)
and Arabasz et al. (2002, 2003).

The catalog produced by the routine data processing was incomplete for the first 3.75
hours following the arrival of seismic waves from the DFE in Utah because (1) the large, long-
period body and surface waves from the DFE obscured local earthquake signals and interfered
with the event triggering agorithm, and (2) the large number and widespread distribution of the
triggered local earthquakes made it difficult to sort out the P and S arrivals from different events.
In order to locate more of the triggered earthquakes which occurred in the Utah region during
this time period, we retrieved continuous waveform data from seismic stations in the region for
the time period Nov. 3, 22:16 UTC to Nov. 4, 02:00 UTC. We highpass filtered thisdataat 1 Hz
and then played it back through the Earthworm V6.0 automatic earthquake location system (see
http://gldbrick.cr.usgs.gov/ew-doc/) to obtain alist of possible local earthquakes. For each of the
44 events identified by Earthworm that was not aready in the catalog, an anayst interactively
picked arrival times on highpass-filtered data and attempted to locate the event. As aresult of
these efforts, we were able to add 22 events (including five of M 3 1.5) to the Utah region
earthquake catalog in addition to the 16 events that were aready in the catalog for this time
period.

To prevent surface waves from interfering with M, determinations for earthquakes during
the first four hours after the DFE, we highpass filtered the synthetic Wood- Anderson records
using a frequency-domain cosine taper with an amplitude of 0.0 at 0.4 Hz and 1.0 at 0.8 Hz.
Tests indicate that this filtering has a negligible effect on M, determinations for earthquakesin
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the size range for which we applied it, M| £ 2.6. All of the M. determinations for earthquakes
during the first 17 hours after the DFE were done on records filtered with a 3-pole, 1-pass, 1-30
Hz Butterworth bandpass filter. This filtering was necessary because the signal duration
measurements used to calculate M ¢ are made with the aid of UUSS-devel oped software which
fits an equation to the latter part of the seismic record where the amplitude decays with time.
This automated duration measurement procedure does not give accurate results for local
earthquakes superimposed on large, long-period surface waves.
Initial Observations

An obvious increase in local seismicity began with the arrival of surface waves from the
DFE. Figures 2, 5, 6, and 7 illustrate this seismicity rate increase in four different ways. Figure
5 shows the spatiotemporal distribution of seismicity in the Utah region during the 3.5-year time
period included in the catalog. The earthquake epicenters (Fig. 5a) are concentrated within the
northerly-trending Intermountain Seismic Belt (e.g., Smith and Arabasz, 1991). In the space-
time plot (Fig. 5b), avertical alignment of earthquakes immediately following the DFE reflects
near-simultaneous seismicity over a 500-km north-south extent of the seismic belt, extending
from north of the Utah border to at least |atitude 37.7° on the south. The occurrence of such a
widespread concentration of seismicity over such a narrow time window is a unique observation.
Figure 6 shows the temporal distribution of seismicity in the Utah region during the 3.5-year
time period included in the catalog. Note the abrupt increase in seismicity following the arrival
of surface waves from the DFE. During the first four hours, 39 earthquakes (M £ 2.6) occurred,
and atotal of 65 shocks (none larger than M 2.6) occurred during the first 24 hours. Such a daily
rate is more than an order of magnitude greater than the pre-DFE rate of 1.9 events/day for the
catalog and is particularly notable in the absence of a moderate-to-large local main shock.
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Figure 7 gives athird useful perspective, focusing on Utah's Wasatch Front area (Fig. 8, Region
I1), where seismographic coverage in the state is most dense. The magnitude-time plot shows a
marked contrast in seismicity before and after the DFE. The increase in seismicity rate after the
DFE is accompanied by larger magnitude earthquakes, consistent with a greater sample size of
earthquakes with atypical exponential size distribution (see Anderson et al., 1994). Figure 7
further shows that what we will identify as triggered earthquakes involved not only immediate
occurrences on a time scale of hours following the DFE but also delayed occurrences (M £ 3.2)
on atime scale of days. To first order the seismicity came in bursts: a strong burst in the first
few hours to a day followed by bursts around days 5, 11, and 14. Note that there were no large
DFE aftershocks (M2 7) during the time frame of Figure 7 which could have triggered these
bursts. Figure 2 shows the spatial distribution of the seismicity in the 14 days preceding and
following the DFE. This figure again shows the widespread distribution of triggered seismicity
in the region. However, it also shows that in the 14 days following the DFE many of the
earthquakes were spatialy clustered. Further figure 2 demonstrates that there is no correlation
between the epicenters of the triggered events and locations of regional Quaternary volcanic

vents.

Statistical Analyses of Increased Seismicity

In order to analyze the statistical significance and other characteristics of the increased
seismicity following the DFE, we began with a scrutiny of our earthquake catalog for
homogeneity and completeness. Key stepsincluded (1) "declustering” the catalog (i.e.,
decomposing it into main and secondary events), (2) analyzing the catalog for evidence of
changes in reporting quality as a function of time, and (3) determining the magnitude of
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complete reporting as a function of space and time. To decluster the catalog, we used a modified
version of Reasenberg's (1985) algorithm with a generic Utah aftershock model (Arabasz and
Hill, 1994, 1996). We explored adjusting parameters in the algorithm, evaluating outcomes by
visually inspecting space-time plots of the decomposed catalog and by examining identified
clusters for appropriate linkage of secondary events in space and time (e.g., Savage and dePolo,
1993). Ultimately, we achieved satisfactory results using declustering parameters nearly

identical to those used by Reasenberg (1985) for California seismicity. For the magnitudes of
compl eteness that we adopted (discussed presently), resulting counts of independent main shocks
were fairly insensitive to changes in declustering parameters.

We evaluated the homogeneity of magnitude reporting with time using the GENAS tool
in the software package ZMAP, v.6 (Wiemer, 2001, and references therein). Processing a
declustered version of the catalog (M 3 0.0) for the entire Utah region, we found no
inhomogeneities in magnitude reporting. Although 60 strong- motion and 5 broadband/strong
motion digital telemetry stations were incrementally added to Utah's real-time seismic network
in the Wasatch Front area during the catalog period as part of an ANSS initiative (Arabasz et al .,
2003), the set of stations employed in the network triggering algorithm did not change greatly.

In order to determine the minimum magnitude of complete recording, Mcomp, as a
function of both space and time, we followed the methodology of Wiemer and Wyss (2000,
2003), again using ZMAP. We note that the high-quality catalog used in this study differs from a
western United States catal og, 1995-1999, analyzed by Wiemer and Wyss (2000), based on
which they reported Mcomp for parts of Utah. For our catalog, we estimated Mcomp from the
nearest 150 earthquakes to nodes of a grid spaced 10 km apart (mean sampling radii ~40-45
km), requiring a minimum of 75 earthquakes 3 Mcomp. We used the ZMAP option that estimates
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Mcomp based on the "best” results from three cal culations involving goodness of fit to a power
law and maximum curvature of the frequency- magnitude distribution (FMD). Both clustered
and declustered versions of the catalog were analyzed, and we generated and examined FMDs
for selected spatial samples of seismicity throughout the region to ensure that false minimawere
not distorting results. Based on iterative analyses that were guided by the distribution of seismic
stations and seismicity in the catalog region, we defined three polygons shown in Figure 8 within
which we have confidence that the indicated Mcomp is reasonably uniform both spatially and
temporally. We use these polygons and corresponding values of Mcomp shown in Figure 8 to
investigate the significance, duration, decay rate, and FMDs of the increased seismicity

following the DFE.

Figure 9 shows the cumulative number of independent main shocksin Region Il (M 3
1.5) and their daily rate as a function of time. The linearity of the cumulative plot reflects both
the homogeneity and effective declustering of the derivative catalog. Both plots show increased
seismicity following the DFE. The average rate increased by a factor of 22 from 0.32 events/day
before the DFE to 7 events/day during the first 24 hrs following the DFE. The corresponding
rate increases for independent main shocks above the compl eteness thresholds in Regions | and

Il are factors of 16 and 43, respectively.

Binomial-distribution Analysis
The significance of a change in average seismicity rate between two time intervalsin a
specified area is commonly measured using the [3-statistic (Matthews and Reasenberg, 1988;

Reasenberg and Simpson, 1992; see also Gomberg et al., 2003). Before describing R-statistic
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methods and our results, we first describe an independent approach we took to regject the null
hypothesis that the increased seismicity following the DFE was due to stationary random
occurrence. We do this because we are mindful that the absolute significance level of Rrelieson
underlying statistical assumptions and because of the need for caution in interpreting the
significance of extremain 3 for short time intervals (Matthews and Reasenberg, 1988; Gomberg
et al., 2003). Consider atimeinterval of duration d (in integer days) following some known time
T of a causative event, such as amain shock or the passage of surface waves from alarge
teleseism, after which a seismicity increase is observed. We seek to determine the statistical
significance of the seismicity increase during the time T + d with respect to its complement (the
rest of the catalog, both before and after) and also to determine that value of d beyond which
seismicity returns to the "background” level of its complement. Assuming that earthquakes
follow abinomial process, we can use the binomial distribution to represent the probability of

random occur rence of independent earthquakes following the DFE (e.g., Ang and Tang, 1975):

n
Pix=k=()ra-pt @
where X is the number of successes, k, in n repeated Bernoulli trials, each with probability p of
success. We define a"success' to be the occurrence of N or more earthquakes per day, and we
count successes during n successive integer days £ d. For independent main shocks of M3 1.5
in Region |1, Figure 10a shows values of k for N = 1, that is, for one or more earthquakes per day
asafunction of n days (1 to 50) after the arrival of surface waves from the DFE. As expected
during a period of above-average seismicity, k increases with n more sharply during the first
several days (Fig. 10a). For the observed values of k and n, the parameter Ppreq (Fig. 10b) isthe

predicted value of P [X = K] from equation (1). Figure 10b shows that the predicted probability
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of the observed k successes between about day 7 and day 25 is less than 0.05, the significance
level a. The vaueof Ppyreqislarger than 0.05 for small n, in part, because of an early hiatusin
triggered seismicity (Fig. 7). We use the point at which Ppreq rises above 0.05 to define the
duration d of anomalous seismicity and a return to background level. To check thisresult using
an empirical method, which does not depend on an assumed probability distribution, for each
observed pair of k and d we computed the corresponding relative frequency of k or more
successes in al possible strings of d consecutive days in the catalog complement. We define this
quantity as Pgpsand note that, for conservatism, we computed it for k or more occurrences rather
than exactly k. Poss (Fig. 10c) validates the significance of Pyreq. Figures 10b and 10c confirm
that the seismicity following the DFE was anomalous and significant at a < 0.05. These figures
also show that the increased seismicity was anomalous at the 95% confidence level for aduration
of approximately 25 days, after which time it returned to background level for independent main
shocksof M3 1.5in Region Il. A similar analysis for independent main shocks of M3 1.7 in
Region | indicated a duration of 44 days for increased seismicity at a < 0.05. Thislonger
duration for the more extensive seismic belt appears to be real and reflects the fact that most of
the events between days 25 and 44 occurred in SW Utah outside the bounds of Region Il (see

Figure 8). Datafor M3 1.2 in Region Il1 were too sparse for reliable analysis.

[3-statistics

Returning to 3-statistics, we follow Reasenberg and Simpson (1992) to compare the rate

raduring alater period of durationt, with the rate r, during an earlier period of duration t,, where
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ra= Nats rp = Nyty, and n,, Ny are the numbers of earthquakes occurring in the respective
intervals. The 3 -statistic is then expressed as

B (Na, No, ta th) = [Na— E(NL)] / [var (ny)] Y2 .
where var denotes varianceand E(ny) = rpta is the expected value of n, under the null hypothesis

of stationary random occurrence. Further following Reasenberg and Simpson (1992): (1) taand
tp are normalized so that t, + tp= 1; (2) secondary events (aftershocks and foreshocks) are
removed from the earthquake catalog to avoid biased comparisons; (3) var (ng) = Neta, assuming a
binomial process; and (4) critical values for 3 estimated from its asymptotic (Gaussian)
distribution are: 1.96 for significance level a = 0.05 and 2.57 for a=0.01. Table 1 summarizes
values of 3 computed for ty = 1 day and t; = 25 days following the DFE, compared to t, = 1037
daysin the pre-DFE catalog. For the three cases of independent main shocksin Regions|, 11,

and I11, whether for t,of one day or 25 days, values of 3 under the above assumptions all exceed

2.57 and thus indicate anomalous seismicity increases with a significance level a < 0.01.

The 3-statistic was originally defined by Matthews and Reasenberg (1988) to measure
differences in seismicity rate in a sequence of earthquakes between some interval of duration d
and its complement, calculated for all possible values of t (interval end time) and d. We
computed and contoured values of 3 (t, d), following Matthews and Reasenberg (1988), for the
entire 3.5 year catalog of independent main shocks in Region Il (M 2 1.5) using uniform grid
gpacings of 7, 14, 21, and 28 days. As might be expected from the seismicity (Fig. 9), the
contour plotsof 3 (t, d) we produced are relatively featureless except for afew extremain 3. In
such an application, one-sided critical values of 3 may be adopted from Reasenberg and
Matthews (1988, Table 3) as4.04 for a = 0.05, and 4.44 for a = 0.01. However, extremain 3

may be less significant than these values suggest if the underlying stochastic process is not
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Poisson (P. A. Reasenberg, personal communication, 2003). The Z-analyses identified a
seismicity decrease (3§ < 3.0) in late 2000 and a significant increase following the DFE,
consistent with the sharp increase in seismicity observed in Figure 9. For a grid spacing of 7
days, 3= 6.2 for a 7-day period ending November 8, 2002, five days after the DFE. For a 14-
day grid spacing, 3= 4.2 for a 14-day period aso ending on November 8. Thus, extremain 3
(albeit for short intervals) corresponding to the post-DFE seismicity were objectively recognized
by calculating 3 for al possible values of t and d in the catalog for the stated grid spacings.
Based on our independent binomial-distribution analyses, reinforced by these varied [3-statistic
results, we rgject with > 95% confidence the null hypothesis that the observed increased

seismicity in Utah following the DFE was due to random occurrence.

We reviewed the timing of 25 other teleseisms of My, 2 7.0 that occurred during the
period of our special-study catalog (Jan. 1, 2000-June 30, 2003) and found no evidence of other
instances of remotely-triggered local seismicity comparable to that following the DFE, as
apparent in Figure 5b. Because some triggered seismicity conceivably may involve a delay of
days after the passage of a dynamic stress pulse, as observed in this study, and perhaps have a
subtle manifestation, we recognize that a suitable experiment has to be devised for systematically

discriminating such seismicity. We leave that experiment for future work.

Comparisons with Background Seismicity
Soatial Distribution

As dready mentioned, one of the most notable features of the triggered seismicity isits
gpatial extent. Microseismicity dramatically increased over a 500-km-long section of the ISB in

Utah following the DFE. The mgjority of this activity occurred in seismically active regions.
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However, unlike many previously-documented cases of triggered seismicity (see Hill et al.,
1992), there is no correlation between the triggered event locations and the locations of
Quaternary volcanic vents (Fig. 2). A second notable feature is that alarge number of the
triggered earthquakes occurred in spatial clusters. In this section, we present results from a
detailed analysis of each of these spatial clusters.

We define a spatial cluster as a group of five or more earthquakes with interevent
gpacings of <5 km. A catalog sort of seismicity 14 days post-DFE included seven such spatial
clusters (Fig. 2). These clusters are widespread throughout the region, as are the rest of the
triggered events. To get precise relative locations for the triggered seismicity relative to the
background seismicity, we applied a double-difference relocation technique (Waldhauser and
Ellsworth, 2000) using analyst-picked arrival times from the UUSS network. For three of the
seven clusters, this algorithm produced stable results. In the other four cases, there were either
too few earthquakes or too few nearby stations to adequately relocate the triggered seismicity.

Figure 11a shows the relocated epicenters for clusters A, C, and F. In map view, the
triggered seismicity appears even more tightly clustered than originally thought. In clusters C
and F, which include some background seismicity, the majority of the triggered events are
gpatially separated from the background seismicity. Cluster A is particularly interesting because
it occurred in aregion of no prior seismicity near the northern terminus of the Wasatch fault (Fig.
2), where the catalog contains no prior seismicity. Because the epicentral locations of these
earthquakes are 2 —3 km east of the west-dipping Wasatch fault, these earthquakes probably did
not occur on the Wasatch fault. This burst of seismicity occurred on day 14 towards the end of

the triggering period.
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Of the seven clusters identified, clusters A, D, and E are in regions of little or no prior
seismicity in the catalog (Fig. 12). In these clusters the seismicity occurred in a short time period
and then abruptly ceased. The seismicity in cluster C also appears to have terminated with the
end of the triggered seismicity, even though there were several prior background earthquakes. In
the other clusters characterized by frequent background earthquakes (clusters B, F, and G), the
seismicity persists throughout the catalog-time period. In fact, alarger regiona event (M. 3.6)

occurred in cluster B on January 3, 2003, shortly after the return to background seismicity rates.

Omori-like Decay Rate and b-Values

In aggregate, the seismicity triggered by the DFE in Utah displayed an aftershock-like
decay rate (Figs. 6 and 7). The added complexity of localized space-time clustering resulted in a
composite appearance (Fig. 7) similar to that commonly observed within aftershock sequences
having secondary "offspring" sequences (e.g., Utsu et al., 1995; Guo and Ogata, 1997). Our
intent here is two-fold: to demonstrate that the triggered seismicity can be modeled as an
aftershock sequence and to compare the decay rate of triggered seismicity quantitatively to that
of aftershocksin the same region. Given the large spatial extent of the triggered seismicity
compared to what might be modeled in alocalized aftershock sequence, we choose smply to
model its overall decay rate using the modified Omori law (Utsu, 1961, Kisslinger and Jones,
1991):

nt) =k/ (t+ o) (3)

where n(t) is the number of events per unit time at timet, and k, ¢, and p are constants specific to
the sequence. Our particular interest is in the relative value of the parameter p, which measures

the exponential rate of decay of seismic activity (with larger p implying a faster decay rate). We

B-18



set aside discussion of k, a measure of the productivity or total number of events in the sequence,
and ¢, an adjustment term that reflects incompl ete detection in the earliest part of the sequence
and also avoids asingularity at t =0. Model parameters were computed using maximum-
likelihood techniques implemented in ZMAP and incorporating Reasenberg's (1994) ASPAR
software (see Wiemer, 2001, and references therein). We modeled triggered seismicity using
both the raw (clustered) catalog and the declustered catalog. The motivation for considering
results from the latter is that the declustered triggered seismicity may be more analogous to
aftershocks caused by a simple point process and hence be better represented by the modified
Omori law.

Table 1 lists p-values computed for Regions |, I1, and 11 for the indicated values of Mcomp
and for both clustered and declustered earthquakes during the 25-day period following the arrival
of surface waves from the DFE. Figure 12 illustrates results for the modified-Omori- law
modeling of decay rate for all earthquakes located in the Wasatch Front area (Region 11) during
the same 25-day period (seismicity in Fig. 12 can be directly compared with that in Fig. 7 for the
25-day post-DFE period). In Figure 12, we assume reasonably homogeneous reporting down to
smaller magnitudes (i.e., the reporting of a constant proportion of events as a function of size), as
opposed to using the Mc¢ompthreshold of 1.5. The magnitude distribution for the sampled
earthquakes (inset, Fig. 11) peaks dlightly above magnitude 1. The p-vaue of 0.65+0.04 shown
in Figure 11 approximates the average of the six p-values listed in Table 1, which range from
0.5310 0.75, and is afair representation of the overall regionwide temporal decay of triggered
seismicity in Utah following the DFE. For comparison, Arabasz and Hill (1994) determined a
mean p-vaue of 0.80+0.13 (1 std. dev; median = 0.75) for 11 aftershock sequencesin Utah
following main shocks of M| 4.5t0 6.0, 1975-1992. For 62 aftershock sequencesin California,
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19331987, Reasenberg and Jones (1989; see also Kisslinger and Jones, 1991) reported a mean
p-value of 1.07+0.03 (median = 1.08), indicating afaster decay rate on average than for
aftershocks in the Utah region. We recognize that p-values may vary in space and time within
individual aftershock sequences (e.g., Wiemer et al., 2002); so the p-values reported here (Table
1, Fig. 11) clearly represent overall averages. From our p-value analyses, we conclude that the
triggered seismicity in Utah can be modeled successfully with the modified Omori law. The p-
value for the Wasatch Front area (Region I1) decay rate is approximately 0.6-0.7 (Fig. 11),
dightly lower than but comparable to a mean value of 0.80 (median = 0.75) determined for 11

aftershock sequences in Utah.

To further compare the triggered seismicity with background seismicity and aftershocks
in the same region, we investigated FMDs in terms of the well known Gutenberg Richter
relationship: logioN = a—bM, where N is the cumulative number of earthquakes of magnitude M
or larger, and a and b constants. Here, our emphasis is on comparing values of b, the slope of the
linear-log FMD, which describes the relative proportion of earthquakes as a function of size. All
b-values were determined using the maximum-likelihood procedure of Weichert (1980) for a
doubly-truncated exponential. Because samples of declustered triggered seismicity were too
gparse for analysis, we consistently used the clustered catalog to compare triggered and
background seismicity. Table 1 lists b-values computed for Regions |, I, and 111 for the
indicated values of Mcomp, both for (1) background seismicity during a 1037-day period
preceding the DFE and (2) triggered seismicity during the 25-day period following the DFE.
The b-values for the background seismicity range from 0.77 to 0.91. The available b-vaues for
the triggered seismicity in Regions | and |1 (Table 1, 0-25 days) are 0.81+0.04 and 0.60+0.13,

respectively. These values are lower than those for the corresponding background seismicity by
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0.10 and 0.17, respectively. For the 11 Utah aftershock sequerces referred to above, Arabasz
and Hill (1994) determined b-values (also from clustered seismicity and using the Weichert
algorithm) ranging from 0.53 to 1.40, with amean of 0.83+0.22 (1 std. dev.; median = 0.87).
The b-values for the DFE-triggered seismicity fall within about one standard deviation of the

mean b-value for these aftershock sequences.

We evaluated the statistical significance of the differencesin b- value between the
triggered and background seismicity using two tests described by Wiemer and Wyss (1997).
One tegt, following Utsu (see Wiemer and WYyss, 1997, equation 2), calcul ates the probability
that two FM Ds come from the same population, based on their respective b- values and sample
sizes. The other test uses a Monte Carlo technique, implemented in ZMAP, to evauate the
uncertainty of b-value as a function of sample size. For Region |1, the Utsu test gives a
probability of 0.06 that the b-values for the triggered and background seismicity come from the
same population, and the Monte Carlo test indicates that the b-value for the triggered seismicity
isin the lower 5% tail of the expected distribution for sampling the background seismicity with a
sample size of 59. For Region I, however, both tests indicate that the b-values for triggered and
background seismicity are not different at alevel of significance < 0.2. Thus there is mixed
evidence whether the b-value for seismicity triggered by the DFE is significantly different from,

and perhaps lower than, background seismicity.

Focal Mechanisms
We were able to determine focal mechanisms from P-wave first motions for the two

largest triggered earthquakes in Utah: an M. 3.2 event which occurred on Nov. 8 in Cluster F
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(Figs. 2 and 13b) and an M, 3.0 event which occurred on Nov. 9 in Cluster E (Figs. 2 and 13c).
We attempted to determine focal mechanisms for the next two largest events in each cluster (2.3
£ M_ £ 2.8). However, there was not enough first motion data for these smaller earthquakes to
reliably constrain the focal mechanisms. For comparison purposes, we aso determined focal
mechanisms for (1) a 1992 M, 4.3 event in Cluster F (Fig. 13a) and (2) the two largest
earthquakes triggered near Cedar City, Utah, by the 1992 Landers, California, earthquake (Fig.
13d,e; see Hill et al., 1993). The focal mechanisms were done using velocity models and
procedures described in Bjarnason and Pechmann (1989) with one modification. For the
earthquakes in Cluster F, we used the Southern Wasatch Plateau velocity model of Pechmann et
al. (1992) because this model gives a much better fit to the travel-time data and more realistic
focal depths.

The focal mechanism for the M. 3.2 earthquake in Cluster F shows dominantly strike-slip
faulting on a poorly-constrained NW- or NE-striking plane (Fig. 13b). All of the first motions
for the M. 3.0 earthquake in Cluster E are compressional (Fig. 13c). Nevertheless, the focal
mechanism for this event is reasonably well constrained and indicates normal faulting on a N- or
S-dipping plane. The contours onthe focal sphere plotsin Figure 13 outline orientations of the
tension axes for solutions with the minimum number of readings in error (solid contours) and up
to one good or two lesser-quality readings in error (dashed). Based on these contours, the focal
mechanism tension axes for the two largest Denali-triggered events are constrained to trend
between NE-SW and NW-SE. These axes are notably different from the average tension axis
direction for earthquakes in this area, which is EW to ESEWNW (Arabasz and Julander, 1986;
Bjarnason and Pechmann, 1989). The first motion data that we compiled for the smaller events
during 2002 in clusters E and F indicate that the focal mechanisms for the eventsin each cluster
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are variable. Therefore, it is difficult to judge the significance of the unusual tension axis
orientations for the largest events.

The focal mechanism for the 1992 M 4.3 event in Cluster F shows dominantly strike-dlip
faulting on aNW- or NE-striking plane, with an ESEEWNW- to ENE-WSW-trending tension
axis that is reasonably close to the average regional trend (Fig. 13a). Of the two focal
mechanisms for the 1992 L anders-triggered earthquakes (Fig. 13d, €), only the second is well
constrained. This focal mechanism shows normal faulting on a W- or SE-dipping plane and has
a SE-NW-trending tension axis, which is fairly close to the average regional trend. Therefore, in
contrast to the focal mechanisms for the Denali-triggered earthquakes, the focal mechanisms for
the Landers-triggered earthquakes do not appear to have any unusual properties. Note, however,
that because of the difference in the directions of the Landers and Denali earthquakes from Utah
(SW versus NW), the orientations of the dynamic stresses from these earthquakes probably had

different orientations.

Implications for Triggering M echanisms

Although evidence that large earthquakes trigger remote seismicity is conclusive, the
mechanism remains elusive. Anderson et al. (1994) found some similarities between Landers-
triggered seismicity and aftershock sequences. For the seismicity triggered in Utah following the
DFE, we found that both the temporal decay and the FMD are similar to those of Utah aftershock
sequences. These similarities between triggered seismicity and aftershocks suggest the
possibility that the causative mechanism could be the same for both. A dynamic stress pulse
associated with the passage of surface waves is a possible candidate for initiating both remotely

triggered seismicity (see Hill et al., 1993 and Gomberg et al., 2001) and aftershocks (see Kilb,
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2002; Kilb et al., 2002; Gomberg et al., 2003). However, since dynamic stress change can only
cause instantaneous failures (Gomberg, 2001; Belardinelli et al., 2003), and the time lag between
the surface waves and remotely triggered earthquakes can range from seconds to days, the
properties of the dynamic stress pulse—magnitude (Gomberg et al., 2001) and spectral content
(Anderson et al., 1994; Vosin, 2002; Brodsky, 2003)—must somehow modify the properties of
the fault or immediate environs such that failure is induced or time to failure is accelerated.
Proposed mechanisms resulting from a dynamic stress pulse include: unclamping of the fault
caused by oscillations normal to the fault surface (Brune et al., 1993), changes in pore fluid
pressure or (Hill et al., 1993), rate-and-state dependent friction (Dietrich, 1994), nonlinear
friction (Voisin, 2002), or subcritical crack growth (Das and Scholz, 1981).

From our analysis of triggered seismicity in Utah following the DFE, we are unable to
determine a mechanism. However, we can conclude, as have other studies, that the triggering
mechanism is somehow related to an elevated dynamic stress pulse. If this conclusion is correct,
then our results imply that the dynamic stress pulse must cause changes that persist for at least 25
days. A complete model should also account for secondary bursts of activity and spatial
clustering of events. We found no correlation with Quaternary volcanic vents. Thus, the
mechanism apparertly does not require conditions which are unique to areas of active volcanism.
However, the mechanism should be able to explain why volcanic regions associated with active
geothermal fluid flow are more often triggered and have a higher productivity of triggered
earthquakes than more typical continental crust. For example, the DFE triggered 250 locatable
eventsin Yelowstone in the first 24 hours (Husen et al., 2004) compared to 65 locatable events

in the Utah region during the same time interval.
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. We cannot rule out mechanisms related to pore fluid pressure changes because we
know that: (1) ground water flows along regiona normal faults forming hot springs (Ehlers and
Chapman, 1999) and (2) the DFE seismic energy disturbed the ground water table in at least one
well located at the north end of the Great Salt Lake (Mark Danner, personal communication,
2002). With the available data we aso cannot rule out any of the other aforementioned

mechanisms.

Conclusions

With greater than 95% confidence, we conclude that the increase in earthquake
activity following the passage of the surface waves from the DFE did not occur randomly.
Elevated rates were highest immediately following the DFE and subsequently decreased with
time in amanner similar to that of Utah aftershock sequences. The rates declined to background
levels (at the 95% confidence level) in most areas after 25 days. The triggered earthquakes were
al small (M £ 3.2) and had a frequency-magnitude distribution comparable to that of Utah
aftershocks. Because of the timing of the seismicity rate increase and the high peak dynamic
stresses of 0.12 to 0.35 MPa generated by the DFE surface waves, we conclude that the increased
earthquake activity was most likely triggered by some mechanism associated with or ancillary to
the dynamic stress pul ses associated with the surface waves. The similarities between the DFE-
triggered seismicity and Utah aftershock sequences suggest that aftershocks might also be
triggered by dynamic stresses, as some have hypothesized (e.g. Kilb, 2002; Kilb et al., 2002;
Gomberg et al., 2003).
The triggered seismicity was widespread throughout the 1SB in Utah, occurred generally within
seismically active areas, and tended to spatially cluster. There is no correlation between the
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locations of the triggered earthquakes and Quaternary volcanic vents. Relative relocations for
the earthquakes in three of the spatial clusters show that the epicenters of most, but not all, of the
triggered events were spatially separated from those of prior seismicity during 2000-2003.
Comparisons of first-motion focal mechanisms from the two largest triggered earthquakes to
focal mechanisms of other Utah region earthquakes tentatively suggest the possibility of aleast-
principal-stress-axis rotation associated with these triggered events. Remotely triggered
seismicity in the Utah earthquake catalog appears to be rare. Whether instances go unrecognized
because of incomplete detection or masking during the time period of hours following

earthquakes with large surface waves is left for future work.
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Table 1
Statistical and Seismicity Parameters®

Region Period (days)” Num. > My b b-value p-value
| pre-DFE 550 (382) NA 0.91+0.04 NA
(Meomp = 1.7) 0-1 9(6) 928) e
0-25 54 (22) (4.27) 0.81+0.16 0.53£0.09
(0.59+0.14)
I pre-DFE 523 (337) NA 0.77+0.04 NA
(Meormp= 1.5) 0-1 10 (7) (AL7) e e
0-25 50 (19) (3.86) 0.60+0.13 0.53+0.09
(0.70+0.14)
Il pre-DFE 247 (169) NA 0.79+0.06 NA
(Meormp= 1.2) 0-1 11(7) (169) e e
0-25 27 (16) (598) e 0.73:0.11
(0.75£0.15)

1. Vauesin parentheses based on "declustered” catalog; al others, on raw catalog with clustering
2. pre-DFE catalog = 1037 days; 0-1 and 0-25 indicate days after arrival of DFE surface waves
3. Vauesof band p are maximum-likelihood estimates + standard error of estimation
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Figure Captions

Figure 1. Transverse Mercator projection depicting the Harvard centroid moment tensor
(http://www.sei smology.harvard.edu/CM Tsearch.html), great circle extension (solid line) of the
rupture direction and £10° from the rupture direction (dashed lines). Utah is within 10° of the

peak directivity along the rupture direction.

Figure 2. Comparison of seismicity in Utah immediately before and after the DFE. Diamonds
in the right panel are epicenters of earthquakes occurring during the first 24 hours following the
DFE surface waves. Circles represent the remainder of the epicenters during the indicated time
periods. Crosses show locations of Quaternary volcanic vents (Blackett and Wakefield, 2002).

Clusters A-G are keyed to Figure 11.

Figure 3. Seismograms of 1-Hz high-pass filtered vertical broadband data for ~1 hour before
and ~2.7 hours after the arrival of the body waves from the DFE in Utah. The high frequency
spikes correspond to local tectonic earthquakes. For the record from station HV U, 30-second
windows have been enlarged to show (@) the DFE body waves, (b) alocal event overprinted on
DFE surface waves, and (c-f) local tectonic earthquakes. All three records are from stations in

northern Utah.

Figure4. (@) Broadband seismograms of the Denali Fault Earthquake from station CTU in
northern Utah. L and R denote the Love and Rayleigh waves, respectively. The shaded box

highlights the first triggered earthquake in Utah. Note that its arrival is coincident with the Love
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waves. (b) Enlarged vertical-component waveforms from the shaded box in (a). The M| 2.1

earthquake shown was located 13 km northesast of the station at 11 km depth.

Figure5. All earthquakes in the Utah region, excluding mining-related seismicity, January 1,
2000-June 30, 2003. (a) Epicenter map with rectangular bounds corresponding to the catalog
domain; state boundary of Utah shown for reference. (b) Space-time diagram for seismicity
included in (a). Earthquakes are plotted as a function of origin time and latitude, projected along
the line A—A". Arrow marks the time of the Denali fault earthquake (DFE) and temporaly

related seismicity in Utah.

Figure 6. Number of earthquakes per caendar day (UTC) versustime in the 3.5-year
earthquake catalog depicted in Figure 5. Upward arrow marks the time of the Denali fault
earthquake (DFE); downward arrows, the times of earthquakes of magnitude (M, ) 4.0 or larger in

the catalog.

Figure 7. Plot of earthquake magnitude versus time showing the relative rate and size
distribution of seismicity in Utah's Wasatch Front area 30 days before and after the Denali fault
earthquake (DFE), set at time 0. The sample includes all earthquakes located within Region 11

on Figure 8 during the specified time window.

Figure8. Map of three domains of differing magnitudes of completeness, Mcomp, used for

statistical analyses. Seismicity and base map asin Figure 5a. Vaues of Mcomp areindicated on

B-37



the right side of the figure. Note that Region | encompasses Region |1, which in turn

encompasses Region I11.

Figure 9. Independent main shocks of M =1.5 in the Wasatch Front area (Region |1, Fig. 8)
during the 3.5- year period, January 1, 2000—June 30, 2003. (&) Cumulative number plot with
arrow indicating the time of the Denali fault earthquake (DFE). (b) Stick plot of number of

earthquakes per day (binned in calendar days, UTC) for the same period.

Figure 10. Composite plot showing results of a binomial-distribution analysis for independent
main shocks of M 2 1.5 located within Region |1 (Fig. 8) during a 50-day period following the
Denali fault earthquake (DFE). Corresponding values of K, Ppred, 8d Pops (See text) are plotted
as afunction of time. Arrows indicate crossings of a probability level of 0.05, taken to represent
the end of an anomalous period of increased seismicity following the DFE and areturn to

background level.

Figure 11. Magnitude vs. time plots for the spatia clusters identified on Figure 2. Each sample
is for the time period Jan. 1, 2000 to June 30, 2003. (&) Includes an epicenter map where the
seismicity in the cluster has been rel ocated using a double-difference procedure (Waldhauser and
Ellsworth, 2000). The bold crosses are triggered events and the gray crosses are background

events. The cross dimensions show an estimate of the 2 std. dev. error.

Figure 12. Tempora decay of triggered seismicity in the Wasatch Front area following the
Denali fault earthquake (DFE) and modeled with the modified Omori law. The time after
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triggering (horizontal axis) is measured from November 3, 2002, 22:29:00.0. This composite
plot includes all earthquakes located in Region Il (Fig. 8) within 25 days of the DFE. The

magnitude distribution for the sample is shown in the inset.

Figure 13. Foca mechanisms for the following earthquakes: (a) M. 4.3, Cluster F, 10 years
before the DFE; (b) M. 3.2, Cluster F, 4.6 days after the DFE; (c) M. 3.0, Cluster E, 5.4 days
after the DFE; (d) M 4.2 near Cedar City, Utah, 0.55 days after the 1992 M 7.3 Landers,
Cdlifornia, earthquake; (€) M. 4.0 near Cedar City, Utah, 0.58 days after the Landers earthquake.
The mechanisms are |abeled with the earthquake origin time (UTC), date, magnitude (M), and
depth (H). P-wave first motions are plotted on a lower-hemisphere projection, with
compressions and dilatations shown as solid and open circles, respectively. Smaller circles
indicate readings of lower confidence. The triangles show dlip vectors and compression (P) and
tension (T) axes. The contours show the uncertainty limits on the T-axis orientations as
determined by the computer program FOCPLT (Whitcomb, 1973), assuming no additional
stations in error (solid lines) and up to one good or two lesser-quality readings in error (dashed

lines).
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