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INVESTIGATIONS

A common feature of the 3D-FD techniques used in strong ground motion simulations and
wave propagation modeling is the use of the uniform-grid formulation (i.e., constant grid
spacing), which requires relatively large computer memory. In order to avoid the spatial
oversampling introduced by the constant grid-spacing in zones with high velocity we have
developed fourth-order expressions for discrete spatial differential operators that can be used
in the staggered-grid 3D FD schemes with non-uniform grid spacing to solve the wave equation
in 3D elastic media. By applying these operators we are able to partially adapt the grid spacing
to the velocity structure in accordance with the accuracy condition required by the finite-
difference method. The use of non-uniform grid spacing improves the efficiency of the finite-
difference methods when applied to large scale structures.

Finite-difference Operators for the Rectangular Grid With Non-Uniform Spacing
To model wave propagations in 3D elastic media we basically follow the staggered grid

finite-difference method proposed by Virieux (1986), Levander (1988), Graves (1996) which
solves the following elastodynamic equations:

dyv, =b(d,7,, + 9, T, +9,T,,) +f,
dyv, =b(d,T,, + 9,1, +9,T,,) +f,
oy, =b(0,T,, +9,T,+9,7,,) +f,

0T = (A +2W)0,v, + A(Q,V, + 9.V, )

0,T,, = (A +2w)a,v, + A(d,v, + 9.V, ) (D
0,7, = (A +2u)9,v, + A(d,v, + 9V, )

0,T,, = u(A,v, + d,v, )

at‘['-xz = p(azvx + asz )

9,T,, = u(0,v, + 9V, )
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Here, (v,,v,,v,) are the particle velocity components; (T,,Tyy,T 7T,y TxsTy,) are the stress
components; (f,.f,.f,) are the body-force components; b is the buoyancy; A and p are Lame’s
coefficients; and 9,,0,,0,, and d, represent the partial differential operators d/d,, /9, ,0/d,, and
d/9, , respectively. By using second-order approximation for time derivatives, the solution of

equations (1) can be expressed in a discrete form by:
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In these equations, the superscripts refer to the time index, and the subscripts refer to the
spatial indices. at is the time step and D,, D,, D, represent the central finite-difference operators
of the spatial derivatives d,, d,, and d,, respectively.

Suppose that the field variable g represents one component of particle velocity (v,,v,,v,)
Or StresS-tenSOr (T, Tyys Ty Tyy Txn Ty,)- The fourth-order finite-difference operator with respect to
x acting on a field variable g can be expressed by the equation

D,g(x,y,z) = ¢,g8(X+4,,Y,2) + C,8(X-8,Y,Z) + C38(X+244,Y,Z) + C,8(X-24Y,Z) 3)

where c; are four coefficients to be determined. Spatial increments a; can be expressed in terms
of the variable grid spacing dx. Similar equations can be used to express the finite-difference
operators D, and D,.

Since we are considering the spatial derivative of the variable g with respect to x, we
assume g(x,y,z)=g,exp(ikx) with g , representing its dependence only on y and z. After replacing
g in Eq.3 we obtain:

ik = ¢, exp(+ika,) + ¢, exp(-ika,) + c; exp(+ika,;) + c, exp(-ika,) 4)

By using the Taylor’s expansion up to order O(»,") to approximate the exponentials in Eq. 4 and
substituting the obtained equations into Eq. 4 we obtain a system of four linear equations:

1 1 1 1 ¢, 0

Al -AZ +A3 'A4 Cz 1
'Alz 'A22 ‘A32 'A42 C3 = O (5)

'A13 +A23 'A33 +A43 C4 O

By solving the system (5) we find the coefficients c; of the fourth-order finite-difference
operator D,. Coefficients c; in the operators D, and D, are similarly determined.




The coefficients c; are generated prior to the finite-difference calculation, once the non-
uniform grid is chosen, which in turn is based on the velocity distribution and the maximum
frequency required in the modeling.

RESULTS
Performance of the Non-Uniform-Grid Finite-Difference Operators

To assess the accuracy of the proposed finite-difference operators, we implemented them
into the finite-difference scheme and performed several calculations to model the wave
propagation in laterally homogeneous and heterogeneous media. In all tests the synthetic
seismograms obtained with the proposed scheme are compared with those obtained with the
reflectivity method (REF) or 3D FD technique with constant grid spacing. Here we show results
obtained with a flat-layered velocity model and a small basin structure, for a double-couple point
source with a focal mechanism of strike=30° dip=80°, rake=30°.

One of the tests was designed to check the capability of the new scheme to handle the
situation where the source is very shallow and embedded into a very soft layer. The source was
located at four grid spacings below the free surface at a depth of 0.5 km. Shallow sources are
efficient at exciting surface waves in such media.

The velocity model has a soft thin layer at the top of the half-space. The vertical grid
spacing increases from the top to depth by a factor of three, the grid spacing in the lower region
being 0.375 km. This ratio is proportional to that of shear-wave velocity ratio of the surface layer
and the half space. The grid spacing in the upper region and in the two horizontal directions was
0.125 km. The velocity seismograms calculated with the non-uniform FD technique are
compared with those obtained with REF at an observation point located on the free surface at
the horizontal range of 10 km . The synthetic seismograms are band-pass filtered
between 0.1-1.3 Hz. The upper frequency limit was defined assuming a minimum of 6 grid
points per shear-wavelength in the vertical direction. The agreement between the two techniques
is very good, suggesting that the FD scheme with non-uniform grid spacing can handle models
with strong velocity contrast.

Next the analysis were extended to a basin model with a strong velocity contrast between
the basin and the bedrock and used a grid spacing which is non-uniform in both horizontal and
vertical directions. The semi-ellipsoidal basin, hypocenter and computational region are shown
in Figure 2. The 3D grid was divided into two regions with different grid spacings. The grid
spacing is 0.1 km in the inner region which includes the basin, and 0.4 km in the outer region.
The grid spacing in each of the two regions was defined so as to satisfy the criteria of having
6 grid points per shear-wavelength everywhere in the model. The grid spacing contrast between
the two regions replicates the shear-wave velocity contrast between the basin and the bedrock.
The region with the refined grid was intentionally extended up to three of the six edges of the
model space, including the free surface.

The result of the test is shown in Figure 3, which compares synthetic velocity
seismograms calculated with both the constant and varying grid spacings for a double couple
point source (strike=30°, dip=90°, rake=30°) , seismic moment M = 10* dyne cm and a bell-
shaped source-time function with a duration of 0.8 sec. The source is located at a depth of 10
km. The accuracy of the two techniques is expected to be the same in the frequency range 0.1-




1.3 Hz since the smallest grid spacing in the basin is the same in both calculations. The band-
pass filtered (0.1-1.3 Hz) velocity seismograms are calculated at receivers located on the free
surface along a line across the basin. The synthetics obtained by the two techniques are very
close. Because the non-uniform grid calculation required about 6 time less computer core
memory than that with the uniform grid and the time increment was the same, the computation
time was reduced by a factor of 6. The improvement in computational memory is model-
dependent, but for sedimentary basin structures with low velocity the gain is considerable in most
cases.

The accuracy of the proposed scheme was assessed also in the cases where the grid
spacing varied in the source region. Such cases may be encountered in modeling ground motions
for both a double-couple point source or an extended fault. Comparisons between analytical
solutions and the new scheme at near-fault stations showed very good agreement between the two
techniques. These result also demonstrated that the fault representation by an irregular distribution
of point sources with the source spacing smaller than the shortest wavelength does not adversely
affect the calculated fault response.

The proposed non-uniform staggered-grid finite-difference formulation is efficient and
sufficiently accurate at modeling wave propagations in 3D elastic media. The accuracy and
stability conditions are locally the same as in the uniform-staggered-grid scheme. All the
numerical tests were performed with a minimum of 6 grid spacings per shortest shear-wavelength.
Up to four grid increments did not affect the accuracy of the results.

The work for modeling the ground motion in Osaka Basin from Kobe, Japan earthquake
is in progress. Preliminary analysis show that the new technique is capable at handling the very
soft surface layer that characterize the surface geology in the Kobe region. In addition to the
basin geometry such layer affected significantly the strong ground motion during Kobe
earthquake.
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Figure 1. Comparison of three-component synthetic velocity seismograms calculated with the
3D FD method with vertically non-uniform grid spacing ( dotted line) and reflectivity method
(solid line), for a double-couple point source and a flat-layered velocity model. Peak velocity

is indicated on the left of each seismogram.
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Figure 2. Velocity Model: half-ellipsoid
basin structure embedded in a homogeneous
half space. The boundary between fine and
coarse grid zones is indicated by dotted
lines. Triangles indicate the receiver
locations and the cross indicates the
epicenter location of a double couple at a
depth of 10 km.
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Figure 3. Comparison of three-component velocity seismograms calculated with the non-uniform-
grid spacing FD method (dashed trace) and the uniform-grid spacing FD method (solid trace) for
the velocity structure shown in Fig.2. All seismograms are band-pass filtered at 0.1-1.3 Hz. Peak
velocity is shown on the left of each seismogram.




