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INVESTIGATIONS UNDERTAKEN
The MW=6.7 Northridge earthquake on January 17, 1994, caused unexpected excessive

damage in Santa Monica and Sherman Oaks, CA.  Previous work (Gao et al, 1996) has concluded
that a small sub-basin lens structure beneath Santa Monica focused seismic energy into these
areas.  The goal of this project is to gather evidence supporting the possible presence of other
focusing or of defocusing structures elsewhere in southern California.  We search for focusing
effects by studying the amplification factors of local seismic stations as a function of incidence and
azimuth for small earthquakes in the Los Angeles basin and surrounding areas.

The earthquakes used were taken from the SCEC database and were limited to those
events in southern California (32.5 - 36.5º N, 116 - 120º W) with ML ≤ 2.5 for which there was an
available fault-plane solution (strike, dip, and rake of the fault plane).  For each earthquake, we
first band-pass filtered the data between 5-15 Hz and removed the instrument response.  For a
given event we used seismograms with signal-to-noise (S/N) ratios greater than 1.5.  We
calculated the radiation pattern in order to determine the location of the nodal planes and then
removed the data from the stations near the nodal planes, where theoretical amplitudes are most
uncertain. We picked the maximum P-wave amplitude at each station within a 3-second window
centered on the expected P-wave arrival time.  Using selected amplitudes near the maximum of
the fault-plane solution we performed a least-squares regression using the equation

ATi    =    Ao

           ri
m

(where ATi is the theoretical amplitude, ri is the distance from the hypocenter for the ith station,
and Ao is a scaling factor) in order to determine the exponent (m) value for each earthquake.  We
calculated the theoretical amplitude for each station based on the individual Ao values, the average
m value, and the radiation function.  The ratios of the observed amplitude to the theoretical
amplitude at each station, after removing outliers, were then averaged over all the events recorded
by that station in order to determine that station’s amplification factor.



RESULTS
P-wave amplitudes (5-15 Hz) from southern California earthquakes appear to follow the

equation (Figure 1):
AT    =    Ao * the radiation pattern

     r0.35

The m=0.35 exponent value is based on 20 events.  For each individual event the
fluctuations in the observed amplitude correspond quite well to the fault-plane solution (e.g.,
Figure 2).

We have calculated the amplification factor for each station of the Southern California
Seismic Network that recorded more than four earthquakes and found they vary from 0.4 to 2.3
(Figure 3).  We are using the data to search for azimuthal variation in amplification factors that
are indicative of focusing.  Preliminary indications are that some azimuthal variation occurs
(Figure 4),  but many more events will need to be processed.

Detailed analysis of the data reveals that maximum P wave amplitudes at short range are
Pg.  At intermediate and long range, where Pg and PmP merge, maximum amplitudes are a
combination of both.  PmP at critical and super-critical incidence rises in amplitude relative to Pg.
This accounts for the low exponent m=0.35, significantly less than m=1 expected for infinite
medium geometric spreading of body waves.  We are currently using LARSE I explosion data to
model PmP and Pg amplitudes through the critical point in order to improve our earthquake
model.
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NON-TECHNICAL SUMMARY
Earthquakes cause variable amounts of ground shaking depending on soil conditions (site

effects) and geologic structural effects such as focusing and defocusing by underground
formations or topographic features.  We analyze amplitudes from the Southern California Seismic
Network to estimate the relative contributions of site and structural effects.  One diagnostic is
azimuthal dependent variation in amplification against which we are comparing the local geology.
The ultimate objective is to predict hazardous shaking from future earthquakes.

REPORTS PUBLISHED
None at this time.



0

50

100

150

200

D
is

ta
nc

e 
(k

m
)

0 1 2

Amplitude

SBK

HYS
BLK

JFS
DTP

FLS
LRL

XMS SBB

WSH

EL2

WBMGSCTPO
SRTSND

FOX
LRR DBM TAB

JNH CLC
TOWLUC

LEO WWP
STT XTLRMM CFL SS2WRCSUN BMTWVP

WCH BTLSIL WHV
PEM THCWCS TEJ

CDY
TJR

QAL
GAV

WMF WASPAS ARV WOFRVR CFT

VVD
TCC

RAY

GTMMDAWLH SME
VPDPLS

SKY

ELS
EW2

POB

BAC
TPC

GRP

PNM

SBK

HYS
BLK

JFS
DTP

FLS
LRL

XMSSBB

WSH

EL2

WBM GSCTPO
SRT SND

FOX
LRR DBMTAB

JNH CLC
TOWLUC

LEOWWP
STTXTLRMMCFL SS2WRCSUNBMTWVP

WCHBTLSIL WHV
PEM THCWCSTEJ

CDY
TJR

QAL
GAV

WMFWAS PAS ARVWOF RVRCFT

VVD
TCC

RAY

GTM MDAWLH SME
VPDPLS

SKY

ELS
EW2

POB

BAC
TPC

GRP

PNM

Figure 1.  Observed (thick line) and theoretical (thin line) P-wave amplitude vs.
distance from the hypocenter for one event.
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Figure 2.  Map of the seismic stations that recorded a single event (star), where
the size of the circle is proportional to the amplification factor, the ratio of the 
observed amplitude to the theoretical amplitude.
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Figure 3.  Map of the amplification factor (ratio of observed amplitude to theoretical amplitude)
at each of the seismic stations, based on 20 earthquakes.
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Figure 4. Lines correspond to ratio of observed to theoretical amplitude for centrally−located
stations EL2 and HYS.  The line directions as plotted correspond to back azimuths to the earthquakes.


